What was I saying? Oh yes. Interrupts. Let me take you
back to Sam’s Kitchen in Roadside, New Jersey, where you
can honk for drive up service from noon to 6. Have another
listen to Marge at work . . .

Marge: One fries, two BLTs, three chili dogs . .. <honk>
Alright, alright . . . and one onion rings. Get those ready.
There’s a guy out there honkin’ that thing like Little
Richard. <outdoors> Yeah, what’ll you have?

Car one: Three burgers, two fries, a shake.
Marge: Ya want bunny burgers or buddy burgers?
Car one: One bunny burger, two buddy burgers.

Marge: <indoors> One bunny, two buddies, fries. Where’s
my order? <at counter> Anything else, Joe? How ’bout
you, Mac?

Mac: Yeah, gimme another dog, will ya Marge? With onions
an’ cheese, too.

Marge: Cheese dog onions.

Kitchen: Orders up.

Marge: Hey where’s my steak? And what about . . .
<honking> . .. the chili dog. Damn. Gotta get that. yeah,
yeah, whaddaya want?

Car two: Gimme three bunnies and. .. <honking from third
car>

Marge: <to third car> Hey fell ’'m busy. Sitonit till I get to
ya. <back to car> Three bunnies. What else, and make it
quick.

Learninsthe6809

What was [saying? Oh yes,
Interrupts. Having been to
Sam’s Kitchen twice, you should
have an idea that interrupts are
crucial to special kinds of
programming. But what kind of
progras would dewand such fancy
footwork? If the programming is
so tricky, why bother?

¥ Three things happen when an
interrupt occurs, What are
they?

The wmicroprocessor finishes its
current instruction, saves
important information, and
follows programsing instructions
in response to the interrupt.

¥ What is the process of acting
on an interrupt called?

Servicing the interrupt.
% What causes an interrupt?

When an external signal line
changes from one to zero,

Can more than ome interrupt
occur?

Yes.

Which interrupt gets taken

care of first?

The one with higher priority.

191

NMI, FIRQ, and IRQ

¥ Can interrupts be ignored?
Yes.

% What permits the processor to
ignore an interrupt?

Masking the interrupt.

What determines whether an
interrupt is wasked or enabled?

The condition code register.

* What part of the condition
code register determines whether
an interrupt is masked or
enabled?

Bits 4 and b.
% What masks an interrupt?

Setting its condition code bit

to a one.

¥ What commands can be used to
affect the condition code
register directly?
ANDCC and DRCC, both immediate
instructions.

What
masks out
interrupts?

command specifically
{turns off) both

ORCC #55@ {binary 012310008},

% What comsand specifically
enables {turns on) both
interrupts?

ANDCC #8AF (binary 10101111},

Three things happen when an

interrupt occurs. What are
they?

The microprocessor finishes its
curvent instruction, saves
important information, and

fallows prograsming instructions
in response to the interrupt.

192 Lesson 22

Car two: How about filet mignon and truffles and leeks
vinaigrette . . .

The restaurant is the computer, and Marge is the
microprocessor. The cook and customers are program and
storage memory. The car horn was the interrupt. Marge
finished was she was doing, serviced the interrupt, and
returned to finish her previous task. When two interrupts
occurred, car two had a higher priority. Finally, the drive-
up interrupt was masked out except from noon to six.

The 6809E processor has one power-up reset signal, three
hardware and three software interrupts, plus two unique
instructions to synchronize itself with hardware interrupts.
All of these 6809 interrupts are possible on the Color
Computer, and some are already in use by BASIC.

The RESET control is used when the power is turned on to
the computer, or when the reset switch is pressed on the
back of the machine. It is a separate electrical connectionto
the 6809 processor, and the RESET cannot be masked by
software; it is always accepted.

The most important of the interrupts — that is, the
interrupt with the highest priority — is the NMI, or non-
maskable interrupt. It is a separate electrical connection to
the processor and, like RESET, it cannot be turned off by
software. It always commands the attention of the
processor.

Of next highest priority is the fast interrupt request, or
FIRQ. The FIRQ can be turned off in software by setting
bit 6 (the F bit) of the condition code register. ORCC #$40
can be used to set this bit, turning off the interrupt;
ANDCC #$BF can be used to clear bit 6 to turn on the
interrupt. When the FIRQ comes along, the condition code
register and program counter are put on the stack, and the
interrupt service routine is begun. The FIRQ is fast
because it leaves the remainder of the register stacking up
to the interrupt service routine. If a register is not used, it
won't need to be put on the stack. I'll talk about the
requirements for speed later on.

The interrupt with the lowest priority is called simply the
interrupt request, or IRQ. When a zero appears on this
electrical connection to the CPU, all the registers — what’s
known as the entire machine state — are saved on the stack.
This interrupt is turned off in software by setting bit 4 (the I
bit) of the condition codes, and turned on by clearing bit 4.
ORCC #$10 turns it off; ANDCC #$EF turns it on.

ORCC #$50 turns off both interrupts; ANDCC #$AF turns
on both interrupts.

You'll remember that I described indirect addressing by
explaining how the computer obtained its first instruction
after the power was turned on. The processor went to
addresses $FFFE and $FFFF, concatenated the contents,
and used that as the address of the first instruction. There

AR
THAT
MILLISECOND
, -
Ie2) 1 3\b
oy o 1
PC.
'3 Sk

are in fact seven such address pairs, called “vectors”.
Power-on reset plus each of the six interrupts has its own
vector from $FFF2 to $FFFF.

Here’s how these vectors look in the Color Computer:

FUNCTION VECTORS ADDRESS CONTENTS

RESET FFFE+FFFF AB27 < BOOT >
NMI FFFC+FFFD P19 --------
SWI FFFA+FFFB 9186 --------
IRQ FFF8+FFF9 PIC JMP 894C
FIRQ FFF6+FFF7 PIOF JMP ABF6
SWI2 FFF4+FFF5 P13 --------
SWI3 FFF2+FFF3 PIpp --------

The power-up RESET goes right to address $A027, a
location in Color BASIC which establishes all the
important parameters of the language.

NMI is not used by Color BASIC or Extended Color
BASIC, but three unfilled bytes in low RAM are reserved
for future use. The future use is provided because the NMI
is wired to connection #4 on the computer’s cartridge
slot.

Software interrupts SWI1, SWI2 and SWI3 are also left
undefined with three unfilled bytes at their vector
locations; they are used by debugging programs such as
ZBUG, part of your EDTASM+ cartridge. Yes, we will talk
about debugging . . . next time. On to the other
interrupts.

FIRQ, the fast interrupt, is hooked to one of the peripheral
interface adaptors, connecting to both the PIA’s interrupt
output lines. The input to the PIA’s interrupt control
signals are two: the carrier detection (CD) line of the RS-
232 communications interface, and the cartridge-in-place
(CART) connection, #8 on the computer’s cartridge
connector. This interrupt serves a dual purpose. When
FIRQ occurs, the vector concatenated from addresses
$FFF6 and $FFF7 point to address $010F; at address 010F
is the instruction JMP $AOF6, a location in the Color
BASIC ROM.

The slower interrupt IRQ is connected to the second
peripheral interface adaptor, also to both of its interrupt
outputs. The interrupt control inputs of this PIA are
connected to the horizontal synchronization (HS) and field
or vertical synchronization (FS) outputs of the video
display generator. Again, this interrupt serves a dual
purpose. When IRQ takes place, the address in vectors
FFF8 and FFF9 are concatenated to produce address
$010C. At $010C is found the instruction JMP $894C, an
address in the Extended Color BASIC ROM.

Learning the 589

6809 vectors

¥ Is there an interrupt that
cannot be masked (turved off)?

Yes,

* Yhat
masked?

interrupt cammot be

The non-maskable
N“I'

interrupt, or
What interrupt has the highest
priority?

The NI,

* What interrupt has the second
highest priority?

The fast
FIRQ.

interrupt request, or

* What bit of the condition code
register masks or enables the
FIR@?

Bit 6 masks or enables the

FIRG.

What information is saved when
the FIRE occurs?

The cordition code register and
progras counter are saved on the

stack.

* What is the lowest priority
interrupt?

The interrupt reguest, or IRG.

* What bit of the condition code
register masks or enables the
IRQ?

Bit 4 masks or enables the IRG.

* bhat information is saved when
the IR@ occurs?

All the registers are saved on
the stack.

* What is the process of acting
on an interrupt called?

Servicing the interrupt.

193

Synchronization

* How does the program counter
find where to go to service the
interrupt?

From a vector, or address, in
the last 16 bytes of memory.

¥ What purpose does NMI serve on
the Color Computer?

Nones it is not used.

* bhat purpose does FIRQ serve
on the Color Computer?

It is used for the RS-232
communications carrier detection
line, and for the
cartridge-in-place connection on
the cartridge connector.

What purpose does the IRQ
serve on the Color Computer?

It is connected to horizontal
ard vertical synchronization
signals frow the video display
generator.

% Yhat are the terws for
vertical and horizontal
synchronization with respect to
the Color Computer,

Field sync (F§} and horizontal

sync (HS1,

% How often does the field sync
{F5) signal occur?

6@ times per second.

* How often does the horizontal
sync (H5) signal occur?

15,728 times per second.

What port address determines
which interrupt is fed through
to the 6889 processor?

Port address $FFQ3.

* What condition code bit masks
or enables the IRQ?

Bit 4 masks or enables the IRQ.

194 Lesson 22

In all these cases, the addresses in low RAM can be
changed or filled in, redirecting the interrupts to any
location in memory. You'll be using those addresses.

Now I’ve given you a formal description of the vectors and
the hookup, but I expect it doesn’t mean a whole lot to you
at this point. I'm going to continue with a detailed
description of how everything fits together into a neat
package, but first I want you to read the technical
information.

Read the MC6809E data booklet page 9 {NMI, FIRQ, IRQ);
read the MC6821 data booklet page 7 (peripheral interface
lines) and page 8 (internal controls), and Figure 18, page 10;
read the MC6847 data booklet page 13 {Field Sync and Hori-
zontal Sync). If you have the Color Computer Technical Refer-
ence Manual, read Section lll (Theory of Operation). Return to
the tape when you have completed the reading.

Read the MC6809 data booklet page 9 (NML FIRQ, IRQ);
read the MC6821 data booklet page 7 (peripheral interface
lines) and page 8 (internal controls), and Figure 18, page
10; read the MC6847 data booklet page 13 (Field Sync and
Horizontal Sync). If you have the Color Computer
Technical Reference Manual, read Section II (Theory of
Operation).

Now putting it together. By correctly writing data to the
PIAs, you can make it possible for the computer to detect
an RS-232 carrier, to detect the presence of a plug-in
cartridge, or to synchronize your programs to the video
display either horizontally or vertically. Allyouneed to add
is software.

I've got two demonstrations of this. The first is a
continuous on-screen software clock; the second, an
example of synchronizing the video display with
programming changes to the screen.

I'm going to put a clock in the upper right corner of the
video screen. It will be there no matter what else is
displayed on the screen, whether you're listing, entering or
editing a line, or running a BASIC program. It will even
keep running with certain machine language programs that
don’t turn off interrupts or change the vectors. I think I'd
like it to count in tenths of a second up to 99 hours, 59
minutes, 59.9 seconds.

You've read the data booklets, so maybe you're ahead of
me. Remember the video display generator’s field sync
(FS) signal, which is used for interrupting the processor.
The video display generator’s field sync signal occurs at
precisely 60 times each second. By enabling the interrupt
(bit 0 of port address $FF03),I canget an interrupt to occur
60 times each second. If I keep track of those ticks and

ez r0 maornss |
Courrare

update my screen with a new time every six interrupts, then
I've got a tenth-of-a-second clock. From a tenth-of-a-
second clock I can create a full real-time software clock.

Here’s the structure of the setup and interrupt service
routine:

1. Set aside some memory for the clock; it might be an
image of the actual display (such as 12:59:02.2).

2. Enable the 60-per-second interrupts.

3. On an interrupt, increment the sixtieth-of-a-second
counter. If the sixtieth-of-a-second counter passes 5,
increment the tenth-of-a-second counter, and clear the
sixtieth-of-a-second counter to 0. If the tenth-of-a-second
counter passes 9, increment the one-second counter and
clear the tenth-of-a-second counter to 0. If the one-second
counter passes 9, increment the ten-second counter and
clear the one-second counterto 0. If the ten-second counter
passes 5, increment the one-minute counter and clear the
ten-second counter to 0. If the one-minute counter passes
9, increment the ten-minute counter and clear the one-
minute counter to 0. If the ten-minute counter passes 5,
increment the one-hour counter and clear the ten-minute
counter to 0. If the one-hour counter passes 9, increment
the ten-hour counter and clear the one-hour counter to 0. If
the ten-hour counter passes 9 clear it to 0.

4. Display the new time to the screen; the re-display will
take place every sixtieth of a second, appearing as a
continuous display.

5. Clear the interrupt status at port $FF02.
6. Return from the interrupt.

The setup process has to clear the way for the interrupts
without getting interrupted in the middle of things. So all
interrupts go off right at the start; the address of your own
routine is placed into the RAM vector; the proper interrupt
signal (in this case, the 60-per-second FS) is enabled;
interrupts are re-enabled; and the setup routine returns to
BASIC. Earlier in the book I presented a map of the
computer’s input/output port bits. Bit 0 of control port
$FF03 provides for the FS signal to be latched as an
interrupt. So the whole routine might look like this:

ORCC #350 * Turn off interrupts
LDX #$START * Service routine start
STX $010D * Store after "JMP" in vector
LDA #337 * Value to enable FS
STA $FFA3 * Enable FS through PIA
ANDCC #SEF * Re-enable IRQ interrupt

%*

RTS Back to BASIC

That’s the setup. The interrupt service routine itself is
really quite simple; get the whole thing loaded into
EDTASM+, and then come back for a walk-through.

Learning the

A software clock

+ What instruction masks the
1RG?

ORCC #$1@ masks the IRD,

* What instruction enables the
1IRQ?

ANDCC #$EF enables the IRQ.

+ What instruction returns to
the progras in progress after an
interrupt has been serviced?

Return from intervupt, RTL.

% When IRR occurs, where does
the program counter obtain the
address of the interrupt service
routine?

From a vector in high memory.
* What is the IRQ vector found?

The IR@ vector is found at $FFFB
and $FFF9,

*# 0n the Color Computer, where
does the IRQ vector point?

The 1RG vector points to address
$818C.

* Where is $018C in the Color
Computer wemory map?

In RAM, on page $01.

In the Color Computer running
with BASIC, the service routine
shown in this example ends with
JNp $894C. Where is $094C in
the Color Computer memory map?

$894C is in the Color BASIC
ROM.

* Why does this service routine
end with JWP $894C instead of
RT1?

Because the interrupt stiil has
to be used by BRSIC for the
cursor flash and the TIMER
comsand.

6809 s

Program #34

Program #34, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S} and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. If the right-hand side
of the program is not similar to the listing, or if an 1/0 error
occurs, rewind to the program’s start and try again. For severe
loading problems, see the Appendix.

3Fee ee1ee ORG $3F0Q
2@11e *
3Fe@ 1A Se @@i1z@ INTOFF ORCC #$50 * TURN INTERRUPTS OFF
3Fez BE 3F1Q oe13@ LDX #START * POINT X TO SERVICE ROUTINE
3F@S BF @1@D e@1 4@ STX $@1@D + STORE ROUTINE TO IRR VECTOR
3Fe8 86 37 ee1S0 LDA #6637 * VALUE Q@11@111 FOR MASKING
3FeR B7 FF@3 evie@ s7A $FF@3 * TURN ON VERTICAL SYNC
3FeD 1IC EF Qo172 ANDCC ~ #$EF * TURN INTERRUPTS ON
3FeF 39 e018@ RTS # AND BACK TO BASIC "OK*
2190
3F1@ BE 3F77 @@z0@ START LDX #IMAGE+1@ * PDINT X TO 1/1@ SEC.
3F13 C6 3@ onz1@ LDE #$30 * B BECOMES ASCII OFFSET
3F1S 6C 84 eozee INC . X * INCREMENT 1/1@ SECONDS
3F17 RE 84 eoz3a LDA 5 X * GET 1/1@ SECONDS VALUE
3F19 81 36 eezs@ CMPA #$36 * 1S 6/1@ SECONDS COUNTED?
3F1R 2D &C eezS@ ELT ouT * IF NOT 6/1@ SECONDS, OUT
3FID 8D 4@ eezea BSR DEC1 % ELSE BAC UP 1 MEM. LOCATION
3FiF 81 3R eez70 cMPA #$30 % IS IT 1 SECOND YET?
3F21 8D 26 2ezee BLT ouT * IF NOT 1 SECOND, OUT
3F23 8D 4t eezge BSR DECE * ELSE BACK UP & MEM. LOCNS.
3F25 81 3R ee3oe cMPA #E30 % IS 1T 1@ SECONDS YET?
3FE7 2D 2e 20312 BLT ouT % IF NOT 1@ SECONDS, OUT
3F29 8D 34 ee3za BSR DEC! * BACK UP 1 MEM. LOCATION
3FEp 81 36 Qe330 cmpA #4536 * 18 1T 6@ SECONDS YET?
3F2D @D 1A ea34@ ELY out # IF NOT 6@ SECONDS, OUT
3F2F 8D 35 2e3se ESR DECZ # ELSE BACK UP & MEM. LODCNS.
3F31 81 3A en36e CMPA #$30 * IS 1T 1@ MINUTES YET?
3F33 2D 14 eez7@ ELT ouT % IF NDT i@ MINUTES, OUT
3F35 8D 28 eo36e ESR DEC1 * ELSE EACK UP 1 MEM. LOCATION
3F37 81 36 @390 CMPA #$36 * IS 1T 6@ MINUTES YET?
3F39 @D ©oF Q04 BLT ouT * IF NOT 6@ MINUTES, DUT
3F3R 8D 29 @@si@ ESR DECE * ELSE BACK UP 2 MEM. LOCNS.
3F3D 81 3A Qas2e cMPA #$3A * IS IT 1@ HOURS YET?
3F3IF 2 28 ae43@ BLT ouT * IF NOT 1@ HDOURS, OUT
3F41 8D 1C QR 44@ ESR DEC1 * ELSE BACK UP 1 MEM. LOCATION
3F43 81 3A Q45 cMPA #$3A * IS IT 1@@ HOURS VET?
3F45 2D @2 pas6@ BLT ouT % IF NOT 1@@ HOURS, OUT
3F47 E7 84 a@47@ STH L X * PLACE $3@ (ASCII ZERD)
w482 *
3F49 128E 0416 22490 0UT LDY #$0416 # POINT TO RIGHT SCREEN
3F4D 8E 3F6D eesen LDX #IMABE * POINT X TO CLOCK IMAGE
3F5e C6 @A aes1a LDE #80A # COUNT 1@ SCREEN POSITIONS
3FS2 A6 B@ ebsze LOOP LDA o X+ * GET CHARACTER FROM CLOCK
3FS4 A7 AR oS3 STA LY+ * AND PLACE IT ON THE SCREEN
3F56 SA 2RS4 DECE * DONE WITH IMAGE YET?
3F57 26 F9 eessa EINE LOOP * IF NBT, THEN BET NEXT CHAR.
Q06 *
3F59 B6 FFO2 22570 LDA $FF@2 # CLEAR VERT. SYNC LATCH
3FSC 7E 894C eesse Jmp $894C * AND TO BASIC TO DO RTI
22590 *
3FSF E7 B84 2ecee DEC1 STE , X * PLACE $3@ (ASCII ZERD)
3F61 6C B2 eec1e INC ,—X * BACK UP ONE MEM. LOCATION
3IFE3 A6 84 euesa LDA . X * BET VALUE FROM IMAGE
3FES 33 eE30 RTS * BACK TO MAIN PROBRAM
20640 *
3FE6 E7 B4 20652 DECE STH 5 X * PLACE $3@ (ASCII ZERD)
3F68 6C 83 QOEER INC , ==X * EACK UP TWO MEM. LOCATIONS
3F6A A6 B4 ewe7@ LDA . X * GET VALUE FROM IMAGE
3FEC 39 eeesw RTS * BACK TO MAIN PROGRAM
00630 *
3F6D 3@ 02700 IMAGE FCC /00:22:00. 00/
3@
2A
30
30
3A
30

196 Lesson 22

3a
2E
3@
3@
QR71@ *
3Faa aQ7ze END
2eRe@d TOTAL ERRORS
DEC! 3FSF
DEC2 3F66
IMARGE 3F&D
INTOFF 3Fee
L0op 3F32
ouT 3F49
START 3Fi1@

INTOFF

The opening is the 16-byte setup routine, turning off
interrupts, redirecting the interrupt vector to my interrupt
service routine, passing through the 60-per-second
interrupt, turning on interrupts, and returning to BASIC.

The service routine itself is a strung-out series of
increments and comparisons. The sixtieth-of-a-second
clock image in memory is incremented and tested for $36
(the ASCII value for the character 6). If it’s less than six, out
it goes; otherwise, it begins a down-the-line test. Notice in
the DEC1 and DEC2 routines the use of an indexed pre-
decrement command; right along you've been seeing the
post-increment commands such as LDA ,X+, but this is the
first time the pre-decrement has turned up. Since this
routine is bumping backwards in memory (from sixtieths of
a second up to tens of hours), a decrement is needed.

Check the sequence in the subroutine:

STB X
INC ,-X
LDA X

The value in B (an ASCII zero}) is stored in memory pointed
to by X. The X pointer is decremented and then its
contents are incremented. Two things of complementary
character are here — the pointer is first decremented, then
its contents are incremented. And finally, the A
accumulator is loaded with the contents of the memory
location now pointed to by X.

After all the increments, tests and updates are complete,
the memory image of the time is transferred to the screen.
Inline 490, Y points to location $04186 on the screen, and X
points to the updated clock. A short loop transfers the
information.

Finally, the command LDA $FF02 resets the latched
interrupt from the PIA. In yourreading of the MC6821 data
booklet, page 8, this was mentioned. I'll read that
paragraph. “The four interrupt flag bits are set by active
transitions of signals on the four interrupt and peripheral
control lines when those lines are programmed to be inputs.
These bits cannot be set directly from the MPU data bus
and are reset indirectly by a read peripheral data operation
on the appropriate section,” In other words, flags go up
inside the PIA when an interrupt takes place; by reading
from the PIA, the flag goes down. LDA $FF02 reads from
the PIA and turns off the interrupt flag.

Auto pre-decrement

the RTI
of an

What happened to
reeded at the end
interrupt? Where is it?

The RTI is found in the BASIC

ROM after it finishes with the
cursor flash and timer update.

* When using the MC6B21 PIR to
cause the interrupt, what is
also necessary at the end of the
service routine?

The PIA's interrupt latch must
be reset.

+ What would happen if the latch
were not reset?

No further interrupts would pass
through the PIR to the
ProCessor,

¥ What two addresses are used by
the PIA that handles the IRQ?

Addresses $FF82 and $FF@3.

* What commsand resets the
interrupt latch?

Rny command that reads from port
address $FF@2, such as LDR
$FFa2,

What does IR0 mean?

IRQ means interrupt request.

What does PIA wean?

PIA weans Peripheral Interface
Adapter.

+ What do FS and HS mean?

FS means Field Sync and HS means
Horizontal Sync.

Learning the 6809 197

Interrupt vectors and BASIC

* What does VDB mean?

VDE means Video

Benerator.

Display

+ What does A/IN/AD mean?

Assemble into memory at the
absolute origin specified in the
source listing.

% Three things happen when an
interrupt occurs, What are
they?

The microprocessor finishes its
current instruction, saves
important information, and
follows programsing instructions
in response to the interrupt.

198 Lesson 22

The last instruction (JMP $894C) might not make sense to
you. You probably expected a return from interrupt
instruction (RTI). Let me explain. You'll recall that the
interrupt vector for IRQ goes to address $0110inlow RAM
for its instruction. At that location is found the instruction
JMP $894C. In order for this time display program to work
properly with BASIC, it must chain itself to BASIC’s
vectors. That vector and the subsequent JMP $8%4C
controls the cursor flashing, among other things. So it’s go
to be there. By replacing JMP $8984C with the JMP $3F10
that gets the time display routine going, the program has
intercepted a vital part of BASIC’s operating system. To
keep the link from IRQ vector $0110 to ROM location
$894C, this program intercepts $0110, patches itself in
place, and finishes by jumping to $894C. The chain is
complete; the time is displayed and BASIC has its cursor.
BASIC finishes by executing the return from interrupt
(RTD).

I think it seems simple enough. Give it a try. Assemble this
program in memory at the correct origin. Type A/IM/AO
and hit enter. The program will assemble into memory.
When it’s finished and the cursor has returned, type and
enter Q. You will quit EDTASM+ and return to BASIC.
Protect memory now; this program resides from $3F00 to
$3F77, so protect from $3F00 on up. Type and enter
CLEAR200,&H3F00. That's CLEAR200,&H3F00.

Ready? Type and enter EXEC&H3F00.

There’s the clock, ticking away in the upper-right-hand
corner of the screen. You can enter, edit and list and run
BASIC programs. Try a few short programs, and see how it
looks to have the clock in the corner.

When you're done with that, try one more test. Create a
BASIC program and CSAVE it to tape. I don’t care what
kind of program itis, and you don’t really even need to have
the tape running. I just want you to CSAVE something, and
keep an eye on the screen. Before the next session, figure
out what you see and why it must happen that way. Have
fun.

In this lesson, I'm going to turn to video display
synchronization achieved with interrupts. But please keep
something in mind as you review these past two lessons.
This may be the Color Computer you’re using, but it’s the
6809 processor you're learning to program. Although every
6809 processor is made with these interrupt capabilities
and signals, those interrupt signals might be wired in a
completely different way on another type of computer.
alternative internal wiring might also mean that the vectors
in memory would be changed and that the timing of the
interrupts would be more or less frequent. Chances are —
except for the method used to turn interrupts on and off,
which is a function of the 6809’s condition code register —
everything would be handled differently. Since you're
learning the 6809 on the Color Computer, I know these
programs will work for you. But if you change computer
systems, you'll have to apply the principles but not
necessarily the actualities of these interrupt sessions.

That said, it’s on to video synchronization. There are only
two unique instructions left to talk about on the 6809.
These are SYNC and CWAI.

SYNC and CWAI are similar instructions: both cause the
6809 to stop processing — that is, cease to follow program
instructions — and wait for an interrupt to occur. SYNC (for
synchronize) simply turns the processing off, to the point of
making it electronically invisible to the rest of the computer
components. SYNC is especially useful when connecting
multiple computers to the same memory; you can’t do that
with the Color Computer because all the necessary
connections aren’t there, but SYNC makes it possible for
some other 6809 computers to work as multiple processor
systems.

Like SYNC, CWAL! also causes the processor to stop, but not
immediately. CWAI (meaning clear condition code bits
immediate and wait for interrupt) first places all the
registers on the stack and then sets the E flag; the E flag
tells the processor that the entire machine state has been

Learning the G807

Dealing with interrupts is no
wore complicated than any
assembly programming. The only
hitches are getting to the
interrupt service routine and
back from it without any errors,
and, where timing is absolutely

critical, getting it over with
before it's time for wore
interrupts. The 6&-per-second

interrupt in the last lesson's
clock progras was leisure tiwe
at its most relaxing compared

with the oprogram in this
lesson!
* What is the process of acting

on an interrupt called?
Servicing the interrupt.

How does the oprogram counter
find where to go to service the
interrupt?

From a vector, or address, in
the last 16 bytes of memory.

What purpose does the IRQ
serve on the Color Computer?

It is conmected to horizontal
and vertical synchronization
signals from the video display
generator.

199

Port bits

® What the terms for
vertical and horizontal
synchronization with respect to
the Color Computer?

are

Field sync (F5} and horizontal

sync (HS),

¥ How often does the field sync
(FS) signal occur?

6@ times per second.

* How often does the horizontal
sync (HS) signal occur?

15,728 times per second.

* What port address determines
which interrupt is fed through
to the 6889 processor?

Port address $FFB3.

% What condition code bit masks
or enables the IR?

Bit 4 masks or enables the IRQ.
the

* What instruction masks

IRQ?
ORCC #%$10 masks the IRQ.

¥ What
1RG?

instruction enables the

ANDCC #%EF enables the IRG.

+ What instruction returns to
the program in progress after an
interrupt has been serviced?
Return from interrupt, RTI.

+ What is the IRB vector found?

The IRG vector is found at $FFF8
and $FFF9,

On the Color Computer, where
does the IRG vector point?

The IRG vector points to address
$018cC.

200 Lesson 23

saved on the stack. The CWAI instruction also keeps the
processor active with respect to the outside world; there is
no “invisibility” with CWAL.

The effective similarity between SYNC and CWAI, then, is
that they both stop the processor’s operations and wait for
an interrupt to occur. The effective difference is that SYNC
just stops the operation, whereas CWAI also presets the
condition codes and saves all the registers.

T'll be using SYNC for these demonstrations. You might be
wondering why stopping the processing with SYNC would
be preferable to the straightforward use of an interrupt as 1
showed you in the last session. With SYNC, you can
complete all the programming work you need for a change
of video contents, then enter SYNC mode and wait for
further instruction. The amount of time you’ve got for the
program and the timing of the interrupts becomes more
important as you write the program, but lets the program
work more effectively.

Let me turn back to the peripheral interface adaptors, the
PIAs, and their control registers. Addresses $FFO1 and
$FF03 have the important information:

i} # = disable interrupt, 1 = enable
interrupt request to processor.

1 p = falling transition, 1 =
rising transition sets IRQA/BI
output.

2 @ = data direction register, 1 =
control register; established at
power-up.

3 One of 3 pair of binary select

signals for control of the analog

multiplexer (see technical manual
for details).

Establishes CA2/CB2 as output

controlled by bit 3 -- always 1

on Color Computer

6 Interrupt flag when CA2/CB2 is an
input; not used on the Color
Computer.

7 Interrupt flag from CAl/CBl --
vertical or horizontal TV
synchronization.

4,5

Now that you know, what do you do with it? I've got to get
technical on you. This is one of those times when hardware
meets software, and in order to program what you need,
you've got to understand what’s going on.

The television screen display isn’t a fixed image of some
kind, but rather the result of a single, constantly moving
electron beam aimed from the back and sweeping across

the front of a glass tube. As the beam sweeps by, rare-earth
elements known as phosphors are excited by the beam and
glow blue, green or red.

By depending on the mixing of the primary colors of blue,
green or red (technically called cyan, green and magenta),
and also on our eyes’ persistence — that is, the ability to
retain an image for a small fraction of a second — a
complete, multi-colored picture seems to be formed.

If you look at the front of the picture tube with a magnifying
glass, you can see the separate colors. By moving your hand
quickly in front of the screen, you can see the image “‘break
up” as your hand’s outline is strobed by the changing
screen image produced by that moving electron beam.

There’s only one electron beam, and it’s moving fast. It
sweeps across the screen, changing color and brightness as
it goes, then turns off, sweeps back, turns on, and draws the
next line. It draws 262 lines altogether, all the while keeping
those lines separated by moving siowly down the screen;
one screen full of lines is called a “field”. At television
speed, “slowly” is only a comparative term, because the
beam goes from top to bottom of the screen 60 times each
second. On the Color Computer, that’s 15,720 lines drawn
every second.

What keeps all this happening at the correct time and keeps
the beam at the correct place on the screen is known as
synchronization. The electrical signal that tells the beam
when to start each line across is called horizontal
synchronization, or horizontal sync. The signal that tells
the beam when to get to the top of the screen and start the
next field is called vertical synchronization, or vertical
sync. Although it would be simpler to call these horizontal
sync and vertical sync, 'm not going to do that. I want to
avoid confusing these sync signals with the 6809 processor
command SYNC.

The MC6847 video display generator, the VDG, creates
horizontal and vertical synchronization, and also another
signal called field synchronization. Field synchronization is
the time between the end of the active display (the very
bottom right of the green block that makes up the display
screen) and the top of the screen (25 lines before the start of
the green block).

For a complete look at all this, open your MC6847 videc
display generator data booklet, and turn to page 11. On
page 11 of the MC6847 data booklet, you can see the
relationship between the blank areas and the active display
area. Take a few minutes to examine Figures 13 and 14.

Learning the 6&)9

Lines, fields and sync

% Where is $Q18C in the Color
Computer wemory map?

In RAM, on page $@1.

* When using the MCEB21 PIA to
rause the interrupt, what is
also necessary at the end of the
service routine?

The PIA*s interrupt latch must
be reset.

* What two addresses are used by
the PIA that handles the IRD?

fddresses $FFE2 and $FFQ3.

What cosmand resets the
interrupt latch?

Pny commard that reads from port
address $FF@2, such as LDA
$FFe2,

What actions does the SYNC
instruction cause?

It causes the processor to stop
processing instructions and wait
for an interrupt to occur.

* What actions does the CWAI
instruction cause?

It ANDs the condition code bils
with a value, places all the
registers on the stack, sets the
£ flag, stops further processing
and waits for an intervupt.

* How are the software actions
of SYNC and CWRI alike?

Both stop further processing and
wait for an interrupt.

How are the software actions
SYNC and CWAI different?

WAl (Clear and MWait for
Interrupt) performs logical and
stack operations, whereas S5YNC
{Synchronize with Interrupt)
does not.

201

Using FS and HS interrupts

* How are the hardware actions
of SYNC and CWAI different?

CWAL keeps the processor active
with respect to the outside
world (to the other circuits);
SYNC makes it electronically
invisible {called a tri-state
condition).

How many horizontal lines does
the electron beam draw on the
video display screen?

262 horizontal lines are drawn
on the screen.

* What is one complete group of
262 lines called?

One group of 262 lines comprises
a field.

* What is the "green block® in
the center of the video screen?

The “green block" is the active
display area.

How many horizontal electron
beas lines comprise the active
display area?

192 horizontal lines make up the
active display area.

¥ How many fields of 262 lines
are drawn each second?

68 fields are drawn each

second.

* How many lines are drawn each
second?

262 lines times 60 fields, or
15,728 lines are drawn each
second.

* What controis the horizontal
lines and vertical fields?

The Video Display Generator, the
VD6,

202 Lesson 23

Turn to page 11 in the MC6847 video display generator (VDG)
data booklet and examine Figures 13 and 14, which present the
active display area of the Color Computer. Familiarize yourself
with the number of horizontal lines and their arrangement. Re-
turn to the tape when you have completed the reading.

Don’t bite your lip; this is all going to fit together very
shortly. When you know about field synchronization and
horizontal synchronization, you know two important
things. The first thing you know is the time when your
processor is free to make its calculations, scan the
keyboard, and so forth. That time falls between the end of
the active display area and the top of the screen. And that
time starts when field synchronization (FS) goes from one
to zero, and that time ends when F'S goes from zero te one.
The 6809 processor can find out when FS changes.

The second thing you know is when the beam starts at the
left of the screen and when it ends at the right. It starts
when horizontal synchronization (HS) goes from one to
zero and ends when HS goes from zero to one. The time
when HS is off the screen very short, however (about one
CPU clock cycle), so in effect, the important time is the
start of the HS period, when HS goes from one to zero. The
6809 processor can find cut when HS changes.

So here’s an outline of the features as they relate to
software,

1. FS goes from high to low. You're out of the
screen and free to calculate and perform other
operations.

2. FS goes from low to high. You've got to
start paying attention to screen lines.

3. HS goes from high to low. The screen has
started.

4. Count 38 HS pulses and you're in the
display area.

5. 192 HS pulses make up one active screen.

6. Repeat it all 60 times and you've got one
full second of programming.

Now it’s getting closer. Feed through the vertical or field
synchronization to the processor’s interrupt, and execute
the SYNC command. When it occurs, execute a vertical
synchronization service routine. That routine should turn
off that feed-through and turn on the horizontal
synchronization feed-through. Create another interrupt
service routine for the horizontal synchronization. Begin

counting until you reach the top of the active display area.
Then you can change the display and count screen lines in
short programming bursts, ending each with SYNC. When
you have counted 192 lines, the screen display area is
completed. You can turn off the horizontal feed-through,
turn back on the vertical synchronization feed-through,
return to the main loop for your calculations and more
sophisticated programming. When that’s done, you can
execute the SYNC command and wait for the process to
start all over.

A practical example is the only way of understanding what
this is good for and how to use it. Before that, though,
please review this lesson so far, reread the control register
information in the MC6821 peripheral interface adapator
data booklet, and re-examine the screen outline on page 11
in the MC6847 data booklet.

Review this lesson. After reviewing, read the control register in-
formation in the MC6821 data booklet, pages 7 and 8. Also
continue to become familiar with the screen outlines on page 11
of the MC6847 VDG data booklet. Return to the tape when you
have completed the reading.

The practical example I've got is about as impractical as
they come in some respects. It shows a bunch of random
colors and shapes on the screen, together with
alphanumerics. There are standard letters and characters
(black on green), high resolution color graphics, more
characters (black on red), medium resolution color
graphics, and more characters. The trick is that all of them
are displayed on the same screen at the same time.

Getting a mix of high-resolution graphics and standard
alphanumerics on the screen at the same time is a simple
function of synchronizing and counting. If you synchronize
to the vertical synchronization pulse, you know where the
screen starts. If you synchronize to the horizontal
synchronization pulse, you know where each of the 192
screen lines is. If you are familiar with your graphics modes,
then you know what character is where on what line.

All that's left is the implementation. My example presents
two rows of alphanumeric characters, a 192 by 48 block of
high resolution color graphics, two more rows of alpha
characters (but in red instead of green), a 64 by 16 block of
medium resoclution color graphics, and three rows of alpha
characters. 1 haven’t filled memory with anything in
particular, so it’s just random junk. But the junk’ll be
moving. Load the source code. I'll take you through it, and
do some explaining.

Mixing graphics modes

vhat is FS5 (Field Synchron-
ization) on the VDG?

The time between the end of the
active display area and the top
of the screen.

When does FS go from high to
low {one to zero)?

When the electron beam leaves
the active display area.

* When does FS go from low to
high {(zero to one)?

when the electron beam reaches
the top of the screen.

When does HS5 go from one to
zero?

When the electron beam begins
drawing a line on the screen.

* When does HS go from zero to
one?

when the electon beam finishes
drawing a line on the screen.

* According to the MCBB4T data
booklet, how many HS pulses
occur before the “"green block”
-~ the active display area --
begins?

38 HS pulses occur before the
active display area begins.

Hw many HS pulses occur
during active display (within
the “"green block")?

192 HS pulses occur within the
active display.

According to the MCBA4T data
booklet, how many HS pulses
occur after the active display
area ends?

32 HS pulses occur after the
active display area ends.

Learning the 6809 203

Program #35

204

Lesson 23

Program #35, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, typle L and press ENTER. The computer will
search {S) and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. [f the right-hand side of
the program is not similar to the listing, or if an I/0 error occurs,
rewind to the program’s start and try again. For severe loading

problems, see the Appendix.

IFaa

IFoQ
SFas
3F@QS
IFaa
IFQB

3FeE
3Fla
3F13
3F14
3F17
3F1A
3F1D
3IFz@
3F23
3Fe5

3Fc6E
3F29
3FeH
3FED
3F2E

3F2F 2

3F.31
3F33
3F36
3F39

3F3C
3F3E
3F3F
3F4@
3Fa4z
3F44
3F47
3F4A

iR
BE
EF

BF

agac
@3
D4z
282
FFaa
FFag
FF@1
FFa3
@1@D
FFCa
FFC1
FFCE
FFC3
FFC4
FFCS
FFaz

S@

21@p
3FC8
IF7D
2a1@D

36
FFai

FFa3
FFCA4
FFL2
FFC@
3F7F
EF

3FS4

EF

FC
FFee

FFCS
FFLC3

3e

FC

FFaz
FFC4
FFCE

Qaaiea
aalL1a
aaiza
a1 3a
@al4d
2a15a
QRI6R
aaive
aal8e
a@1i9a
aazak
@

ROW EGQU 1z
BORDER EQU 35
HIRES EQU $Q4CQ
vVIDTOP EQU +080@
CLEARRH EQU $FFoa
CLEARV EQU $SFFag
HSPORT EQU $FF@1
VSPORT EQU $FF@3
VECTOR EQU s@ieD
VibCLe EeQU $FFC@
vIDST@a EQU $FFCIH
VIDCL1 EQU $FFC&
VIDST1 EQU $FFC3
VIDCLE EQU $FFC4
VIDSTE EQU $FFCS
VIDPRT EQU SFF2E
*
ORG s3IFa@
*
* BGET & SAVE BASIC VECTOR
* PLACE THIS VECTOR
BEGIN ORCC H$5Q
LDX VECTOR
STX STOREV
LDX #HINTER
8TX VECTOR
*
* INTERRUPTS DFF.
* HORIZONTAL SYNC OFF.
* VERTICAL SYNC ON.
* SELECT ALPHR MODE.
* INTERRUPTS ON.
* WAIT FOR VERTICAL SYNC.
STAR LDA H#$36
STA HSPORT
INCAR
8TA VSRORT
8TA VIiDCL.e
8TA VIDCL 1
sS7A vibcLe
LDX #SCREEN
ANDCC #SEF
SYNC
*
% WAIT FOR HORIZ. SYNC.
#* COUNT EBORDR + 24 LINES.
CHANGE TO 128X13& COLOR
LDX #L.INE
LDE #EORDER+Z#R0OW
ANDCC #EEF
LooP1 SYNC
DECE
ENE LO0OP1
LDA HSEF
STA VIDPRT
STA viDsTe
STR VIDST1
*
WAIT FOR HORIZ. SYNC.
* COUNT 48 LINES.
* CHANGE TO ALPHA MODE.
LDE #4%R0OW
LoopPz SYNC
DECE
BNE LO0OPZ
LDA H#$0OF
STR VIDPRT
STA vibCLa
8TR VIDCL

3F4D
3Fa4F
3F50
3F51
3F353
3F55
3F58
3FSB
3FSE

3F61
3F63
3F64
3F65
3F6e7
3FE9
3FeC

3F6&F
3F71
3F72
3F73

3F75
3F77
3F7A

3F7D

3F7F
3F8z
3F84
3F87
3F89
3F8c
3F8D
3F9e
3F93

3F34
3F97

3F398
3F3B
3F9F
3FAL
3FA3
3FARS
3IFR6
3FA8
3FAB

ce
i3
5A
26
86

B7

iA

7E

6E

B6
3R

i8

FC

FFae
FFC4
FFC2
FFC1

32

FC
27
FFaz
FFC@

3a

FC

Se
3F98
3FQE

a4

FFa2
Q7
FFae
36
FF@a3

FFai
FF@@

FFa@

3Fce
3FC4
FUN

8e
F9

2800
@p

a7%@
aoBee
ezs1@
aadza
ea83a
aaB4@
oe8se
aa86Q
aas7e
agsaa
2089¢
2esee
aas1@
agsze
2e33e
Qa94&
2a9Se
aasea
aug7e
2assa
20992
o100
e1a1e
1020
eia3e
2104@
a1ase
21060
a1a7e
@l1es80
Qiasae
al10Q
@111@
@eiize
21136
21140
@115@
a1i6@
2117@
@l18a
@119@
_aizee
elzie
aizaa
@ai1230
a124@
Q1ES@
o126@
@a1z27@
a1z8@
el1z9e
ai13ea
a1310
a1320
@1330
Q1340
21352
@136@
e137e
@138@
2139
at40@
1410
a142Q
@143@
@l1440Q
@145
2146@
ar470
@1480
@143@
ai15e@
@i5i@
2132@
21538
@1548
2155e
28156
e157e
2138@
21592
21600
@161

COUNT 24 LINES.

*
+ WAIT FOR HORIZ. SYNC.
*
*

CHANGE TO 6&64X64 COLOR.

L.DB
LOOP3 SYNC
DECE
ENE
LDA
8TA
STR
8TA
5TA

*
*
*
*

LDE
LOOPA SYNC

DECB

BNE

LDR

STAR

STA
*

R2#ROW

LOOR3
#$BF
VIDPRT
vibCLe
VIDCL1L
VIDST@

WAIT FOR HORIZ. SYNC.
COUNT 48 LINES.
CHANGE TO AL.PHA MODE.

#4%R0OW

1.00P4
#$07
VIDPRT
viDcLe

* WAIT FOR HORIZ. SYNC.
COUNT 48 LINES.

LDE
LOOPS SYNC
DECB

#4#R0OM

LOOPS

DO EBYTE FINAGLE STUFF.

*
* INTERRUPTS OFF.
*
*

START IT ALL ABGRIN.

STOP ORCC #3350
JSR INCREM
Jmp STAR

*

+ SUBROUTINES FOLLOW.

JUMP DFFSET INDEXED.

* X POINTS TO RDUTINE.

INTER JMP o X

*

CLEAR FIELD SYNC LATCH.

SELECT ALPHA MODE.

* TURN VERTICAL SYNC OFF.

% TURN HORIZ. SYNC ON.

* CLEAR HOR. SYNC LATCH.

BACK TO MAIN PROGRAM.

SCREEN LDA CLEARY
LDR #$07
STA VIDPRT
LDA #$36
sTA VSPORT
INCA
STA HSPORT
LDA CLEARH
RTI

*

CLEAR HOR. SYNC LATCH.

* BACK TO MAIN PRDGRAM.

LINE L.DR CLERARH
RTI

*

BYTE-FINAGLE ROUTINE.
BLOCK MOVES $44 BYTES
* AT A TIME, CONTINUING
* UNTIL #VIDTOP IS

+ REACHED.

* RESETS STORAGE AND

* STRART LOCATIONS,

INCREMENTS Y TO NEXT
BLOCK MOVE POINT.

I

NCREM LDX XSTORE
LDY YSTORE
LDE Be44
FILLUP LDA s Y+
STAR y X+
DECB
BNE FILLUR
CMpPX #VIDTOP
BLT VIDMOR

Learning the

Program #35

205

Program #35

What happens at the end of the
active display area?

FS goes from high to low {one to
zero).

+ What PIA address handles the
FS interrupt?

Port address $FF@3.

* What PIR address resets the F5
interrupt?

Reading port address $FFGR.

What PIA address handles the
HS interrupt?

Port address $FF@1.
206 Lesson 23

3FAD BE @429 @ieze LDX #HIRES
3FE@ 1@BE 3FC6 ale3e LDY YHOLD
3FB4 31 21 a1642 LERY 1,y
3FB6 1@BF 3FCée 21652 sSTY YHOLD
3FBAR 1@BF 3FC4 21664 VIDMOR STY YSTORE
3FBE EBF 3FCe @ai167@ 8STX XSTORE
3FC1 39 @168 RTS
Q1698 *
3FCe 620 @17@2 XSTORE FDB sesoe
3FC4 [l @171@ YSTORE FDB seeoe
3FC6 QaQae @172@ YHOL.D FDB $200e
3FCa @173@ STOREV RMB a2
Q1748 *
3FCA @175@ 22722727 EQU *
@1760
3Fee @1776 END BEGIN

2@@e2 TOTAL ERRORS
BEGIN 3Fea
BORDER @023
CLERRH FF@@
CLERRV FF@2
FILLUP 3FAL
HIRES asze
HSPORT FF@1
INCREM 3F98
INTER 3F7D
LINE 3F24
LOOPL 3FE&D
L.oopz 3F3E
L.o0P3 3F4F
LODP4 3F63
LO0PS 3F71

I've prepared this source listing to make full use of labels,
Print the first screenful of lines; start with me at the top.

Internally, the MC6847 video display generator counts to
12, which is the number of horizontal lines that make up a
single alpha character position; so1label 12 as ROW. The
upper border is defined by the 6847, so I label that
BORDER. T'll be moving some display bytes around for
effect; these moving display bytes will start at memory
labeled HIRES and end at memory labeled VIDTOP.

The remaining are labels of key function addresses in
upper memory; scme you've seen before. As you have read
in the MC6821 data booklet, the horizontal
synchronization interrupt is cleared by reading $FF00 and
the vertical synchronization interrupt is cleared by reading
$FF02; they are labeled CLEARH and CLEARV. The
actual synchronization interrupts are fed through to the
6809’s IRQ line by writing enabling information to ports
$FFO1 and $FFO3, here labeled HSPORT and VSPORT.

The IRQ vector from high memory finds its commands as
the operand of the JMP at $010C, so $0610D is labeled
VECTOR.

There are six SAM addresses that control the video modes.
The odd addresses clear the mode bit to zero, the even
addresses set the bit to one. You know that. So mode bits 0,

1 and 2 are laheled VIDCLO and VIDSTO, VIDCL1 and

VIDST1, VIDCLZ2 and VIDST?2. Finally, the port address
for the remaining video controls is found at $FF22; it's
labeled VIDPRT.

Now display the last few lines of the program; begin at line
1500. P1500:* Labels XSTORE, YSTORE and
STOREYV are two-byte groups set aside for temporary
storage of video positions between vertical synchro-
nization pulses.

So now you know the pack of labels I've got here. I've tried
not to clutter this listing with lots of comments, so follow
with me now. The first block of code turns off all interrupts
which may have been enabled, and replaces the IRQ vector
at $010D in RAM with my interrupt service routine. In the
next block, horizontal synchronization interrupts are
turned off, vertical synchronization interrupts are turned
on, and alphanumeric video mode is selected.

The X register is loaded with a pointer to the vertical
synchronization service routine, interrupts are enabled,
and the processor enters SYNC mode. It now waits for the
vertical synchronization pulse to force an interrupt. When
the vertical synchronization interrupt occurs, the interrupt
service routine is entered.

. This routine finds the proper service by performing a zero-
offset indexed jump based on the contents of the X
register. Since X was pointed to the routine labeled
SCREEN, this routine is performed. The SCREEN
service routine clears the vertical synchronization latch,
selects alpha mode, turns off the vertical synchronization
feed-through, turns of the horizontal synchronization feed-
through, clears the horizontal synchronization latch, and
returns from the interrupt. It returns with everything set up
for being interrupted by the horizontal synchronization
pulse.

In other words, when the program starts, everything setsup
and waits for the SCREEN service routine, which
identifies the top of the screen and sets things up for the
262 horizontal interrupts.

The return from interrupt brings things back in the
program to where the X register is pointed to the LINE
service routine, the B registeris set up to count through the
screen border lines and 24 displayed lines. Remember I'm
talking about electron beam lines here, not the usual lines
of text. Interrupts are enabled, and the SYNC wait is on.

SYNC

¥ What PIA address resets the HS
interrupt?

Reading port address $FFo@.

What two items control the VDB
wodes?)

Port $FF22 and the SAM control
the various VDG modes.

¥ What is the general ters for
setting up the PIR or the VDG?

Configuring.

* After configuring the PIA for
interrapts and the VDG for
wmodes, the address of the
interrupt service routine is put
in place. How is that address
accessed?

Through the IR@ vector in high
BOmOrY.

% Where is the IRG vector in
high memory, and where does it
point on the Color Computer?
The IRB vector is at $FFFB and
$FFF9, and points to $QI8C in
RAM.

* What addressing mode is this?
Indirect addressing.

What does IRB mean?

Interrupt request.

* How often does the horizontal
interrupt HS occur?

15,720 times per second.
% ficcording to the MCHB47 data
booklet, about how long is

this?

It is approximately 63.5
wicroseconds.

Learning the 6809 207

Servicing SYNC interrupts

¥ How many 6889 clock cycles is
this on the Color Computer?

63.5 divided by 1.11746 is under
57 clock cycles.

* What actions does the SYNC
instruction cause?

1t causes the processor to stop
processing instructions and wait
for an interrupt to occur.

¥ What actions does the CHWAI
instruction cause?

It ANDs the conditon code bits
with a value, places all the
registers on the stack, sets the
E flag, stops further processing
and waits for an interrupt.

+ How are the software actions
of SYNC and CWRI alike?

Both stop further processing amd
wait for an interrupt.

¥ How are the software actions
SYNC and CWA!I different?

CWAI {Clear and MWait for
Interrupt) performs logical amd
stack operations, whereas SYNC
{Synchronize with Interrupt)
does not.

% How many horizontal lines does
the electron beam draw on the
video display screen?

262 horizontal lines are drawn
on the screen.

% What is one complete group of
262 lines called?

One group of 262 lines comprises
a field.

What is the "green block" in
the center of the videco screen?

The "green block" is the active
display area.

208 Lesson 23

The LINE service routine, arrived at through the zero-
offset-indexed jump, merely clears the horizontal interrupt
and returns. The B register is decremented, and if the
selected number of electron beam lines is not yet counted
through, SYNC is entered again. When the count is finished,
the video mode is changed, the row counter recharged with
a new value, and the SYNC state re-established.

There are five of these horizontal SYNC loops, each
changing the video mode after a specific number of
horizontal lines have been completed.

After the top border plus 192 horizontal lines, the active
display area is complete and interrupts are disabled by the
program. A short byte-move subroutine is called — you can
put anything you like here — which bumps some display
bytes around in the high resolution area. It lets you know
something is happening. After the return from that byte-
finagling subroutine, the process of vertical and horizontal
synchronization starts again.

There are some important things to know. First of all, the
horizontal interrupt occurs about ever 63.5 microseconds.
That means you’ve got just about 57 clock cycles to
perform your horizontal interrupt service routine. LOOP3
is the longest — T'll leave the calculations to you — but it
makes it.

The other critical timing depends on the value of B ($44 in
my example) used to count bytes moved between vertical
synchronization interrupts. In this case, $44 is the highest
number of moves I could fit between pulses.

Now keep in mind that this is a relatively crude
demonstration of the possibilities of video manipulation. If
you're interested in creating fast games or using powerful
graphics capabilities, this method should give you as much
power as any of the famous commercial game machines.

Now try it. Assemble this in memory by typing A/IM/AQ/
NL/NS. Assemble in memory at the absolute origin with no
listing and no symbol table displayed. That's A/IM/AO/
NL/NS. Inafew seconds, the prompt and cursor will reture.
Quit the editor/assembler by typing and entering Q. When
the BASIC sign on message appears, you're ready for the
demo. Type and enter EXEC&H3F00. That’s where it all
starts. EXEC&H3F00.

There’s your mixed-mode display with moving parts. Study
the listing and review this lesson; next time the trials and
tribulations of debugging, hints and ideas, and a summary
of what you have been learning. Till then.

Welcome back. Up to this point, you've been walking an
unfamiliar but well-lit path through assembly language.
When this road ends, though, you’ll be staring ahead into a
kind of wilderness. If you know the natural signs, the
footprints in the snow, how to feed and shelter yourself,
then you'll survive to create your own paths. This course
has been your outdoor survival training.

But that country isn’t like this city, so you'll need not only
the kit of tools — the editor/assembler, the data booklets,
and the knowledge — but you’ll also need something to cut
a path in the underbrush so you can see through the woods
and ahead to your destination.

That tool is a debugger. Sometimes called a machine-
language monitor, the debugger is a program which
displays memory contents, takes memory contents apart
and translates them into mnemonics, does calculations and
even steps through programs an instruction at a time.

The debugger is the “plus” in EDTASM+. This debugger
is called ZBUG; get it ready now. Turn off your computer,
insert the EDTASM+ cartridge, and turn the computer
back on. The usual star prompt and flashing EDTASM
cursor will appear. Type Z and press ENTER. The star
prompt has changed to a crosshatch. You are in the ZBUG
monitor. Now type E and press ENTER. Your star prompt
returns and you are back in EDTASM.

Start with a program; you’ll be doing the typing in this final
lesson. The program is shown in the book. Enter it with the
usual EDTASM insert-line mode (I), and assemble it to
memory at the origin shown (A/IM/AOQ):

ORG $3FpP
VIDED EQU $048p
COUNT EQU $0200

START LDX #VIDEO
LDB #COUNT
LDA #IFF
LogP INCA

fs I come to the end of this
course, it feeis to we like a
greal novel should be ending,
with its sterectypical sunsets,
tears or flowrishes. Rather
than that, it’s just some
debugging and susmaries, Maybe
iater for wmy Great American
Novel: for now, vou finish
learning the 6809,

What is ancther nawe for a
debugging program?

R machine language monitor,

¥ what is the name of the
machine language monitor that is
part of EDTASH+?

IBUG is the debugger.

k What is a breakpoint?

A stapping place in a machire
language progras inserted for

debugging purposes,

* What is used as a breakpoint
in IBUB?

The software interrupt SWI.

Learning the 6809 209

Debugging with ZBUG

¥ What happens when a program
encounters a software inter-
rupt?

All the registers are saved and
the program counter obtains the
SWI vector from high wemory.

¥ What is another name for "all
the registers"?

The machine state.

When an interrupt saves the
machine state, what flag does it
set?

The E, or entire state, flan.

* What is another nawe for a
machine language monitor?

A debugger.

* The following questions
summarize the concepts you
should have learned from this
course.

¥ How are machine language
impulses represented?

By ones are zeros.

¥ What numbers system consists
only of ores and zeros?

The binary systew.

% What is the abbreviation for
binary digit, and what is a
groug of four and a group of
eight binary digits called?

A binary digit is a bit; four
binary digits is a nybble
{nibble); eight binary digits is
a byte.

* What number systew is used in
programeing for the convenient
representation of binary
numbers?

The hexadecimal number systes.

210 Lesson 24

STA K+
DECB

BNE LooP
SWI

END START

When it’s assembled, enter ZBUG by typing Z and
pressing ENTER. Have alook at the assembly; your origin
was $3F00, so type 3FCO followed by a slash. 3F00/ reveals
LDX #VIDEOQ. When you do an in-memory assembly,
ZBUG references your labels. Start pressing the down
arrow. The program is being shown to you command by
command, with each labeled as in the program.

Type BREAK. Again type 3F00, but this time follow it with
a comma. Type a few more commas, and continue tapping
the comma quickly. Watch the screen carefully as you scroll
through the commands. Reverse-video characters begin to
appear and scroll up the screen. Eventually these change to
normal characters, and finally to graphics characters. The
program is executing step by step; the instructions . . .

LOOP INCA
STA X+
DECB
BNE LOOP

... are passing by and actually performing their functions.
Keep pressing the comma. It takes four taps of the comma
to produce one character, so you can see the repetitive
nature of this program.

The character of the program is already familiar to you. It’s
nothing more than a memory fill starting at $0480 and
continuing for 256 loop repetitions.

Now watch it work at full speed; go to the start. Type
G3F00 and tap ENTER. G3F00 ENTER. The screen gets
blasted instantaneously with 256 characters, and ZBUG
prints “8 BRK @ LOOP+6”. There's the software
interrupt command at work. Don’trememberit? Tap E and
return to EDTASM, and print the source code (P#:¥*) on
the screen.

Right before the END statement is SWI, the software
interrupt. This is what ZBUG uses for its breakpoints.
More about breakpoints in a minute; back to ZBUG. Type
and enter Z.

You've seen the labels in this listing. Now look at the actual
hex values. Type H and hit ENTER. Now type 3F00/ and
examine the display. Instead of symbolic notation using the
labels (it used to read LDX #VIDEO) you now see
LDX #480. Oh yes. The default notation in ZBUG is
hexadecimal.

Type S and hit ENTER. Now 3F00/ once again reveals
LDX #VIDEO. Another of these. Type B and ENTER.
3F00/ now shows 8E, the hexadecimal value at memory

@ELM?! D)
A

T~

location $3F00. Hitting the down arrow reveals labeled
locations with hexadecimal values. And finally, one more to
try. Type and enter A. Tap the down arrow and you see
ASCII characters.

There’s some preliminary work with ZBUG. Now you have
reading to do. Chapters 2, 5 and 6 of the EDTASM+
manual have a complete description of the features of
ZBUG. Read all the chapters and try the examples
presented in the manual. Pay particular attentionto the use
of breakpoints — stopping places in the program — and the
ways you can examine and change both memory and
register contents. This powerful debugger will make
finding those program glitches and endless loops lots
easier. When you’re done with the reading, come back for
some suggestions on using ZBUG, and for a final summary
of this course.

Using ZBUG is time consuming, but worthwhile. Youmight
get tired of going through a long delay loop, though. In a
case like this, use the register examination mode to change
the loop value so it’s almost done. Then you can continue
execution, and the loop will complete.

One type of program that is almost impossible to debug in
this manner is the interrupt-driven program. Enabling and
disabling interrupts can be done, but when it comes to their
actual execution, ZBUG will hang up, waiting for the
interrupts which will never come. So for this kind of
program, try your debugging by changing interrupts to
subroutines in key places, saving and restoring the entire
machine state (all the registers), and simulating the
interrupts.

With the ability to use multiple number systems, to provide
automatic calculations, to single-step your programs, and
to display memory and registers, ZBUG is your most
important tool — other than your own careful thinking and
programming — in completing working, speedy and
efficient assembly language programs. At the end of this
lesson, use ZBUG to examine and execute each of the
assembly language programs in this course.

jhaY

In this course you have learned that assembly language is a
representation of machine language, a carefully organized
pattern of electronic impulses. These electronic impulses
directly manipulate the actions of the microprocessor, and
are therefore extremely fast and can be organized to
perform any function which the computer’s hardware
permits. As patterns of electronic impulses, this kind of
programming is distinctly different from high-level
languages such as BASIC, languages which are in
themselves constructed from large-scale patterns of
machine commands.

Machine language consists of electrenic impulses which
are best expressed as one and zero conditions. The binary

Learning the

Examination modes

What does ASCII wean? What is
it used for?
ASCII weans Awmerican Standard

Code for Information
Interchange; ASCII is a binary
pattern of control codes and
characters used for computer
communication and display.

* What is the
organization of
called?

overall
a processor

The architecture.

Describe the architecture of
the 6889 processor.

The 6889 consists of an
frithmetic Logic Unit and an
Instruction Decoder; a program
counter PC, accumulators A and
B, index registers X and Y,
stack pointers 5 and U, direct
page register DP, and condition
code register CC; R and B can be
combined into accumulator D.

¥ What are processor commands
called? What is the data used
by the commands called?

Processor command's are operation
codes, or opcodes; the data used

by the cosmands are the
operands,

¥ What are the verbal
descriptions of processor
commands called? What is a

program listing containing these
descriptions called?

Verbal descriptions are
wnemonics, and a progras listing
containing mnemonics is called
source code.

* What does an assesbler do?

fn assembler translates source

code into object, or binary,
code,

Course summary
What is an addressing mode?

fin addressing mode is the way a
machine language program gets
the information it needs to
complete an instruction.

What are the 6809's addressing
modes?

Inherent, register, immediate,
extended, direct, indexed and
relative,

Describe inherent addressing.

The mode in which the opcode
contains all the information the
processor needs to coaplete the
instruction.

* Describe register addressing.

The wmode in which a2 postbyte
describes the registers which
are used to complete the
instruction.
* Describe immediate
addressing.

The mode in which the
information to complete the
instruction imeediately follows
the opcode.

¥ Describe extended addressing.

The mode in which the
information is found at the
address given after the opcode.

+ Describe direct addressing.

The wode in which the
information is found at the
address calculated from the
direct page register and the
valug following the opcode.

Describe indexed addressing.

The wmode in which the
information is found at the
address calculated from a fixed
or variable offset and an index
register,

212 Lesson 24

system is a representation of ones and zeros, so the binary
system counts in powers of two. The binary digits (the bits)
are organized in groups of eight. These eight-bit groups are
called bytes, and the byte is the word size for the 6809
processor.

6809 words can stand for commands, data, characters, and
can be used for counting and distances. When 6809 words
are used as characters, those words are patterned in
accordance with the American Standard Code for
Information Interchange (ASCII).

All microprocessors have an overall organization known as
architecture. The architecture of the 6809 encompasses its
internal architecture, plus the ability to address 65,536
bytes of external memory. The internal architecture
includes an arithmetic logic unit (ALU), an instruction
decoder (ID), a 16-bit program counter (PC), two 8-bit
accumulators (A and B), two 16-bit index registers (X and
Y), two 16-bit stack points (S and U), an 8-bit direct page
register (DP), and an 8-bit condition code register holding
the flags (CC). The two 8-bit accumulators A and B can be
combined to produce the 16-bit accumulator D.

Commands to the 6809 processor are electronic impulses,
represented by binary digits, and organized as bytes. The
binary bytes are themselves thought of as two 4-bit groups,
each of which is represented in hexadecimal notation.
Hexadecimal notation, also called hex, counts from 0
through F and best expresses the character of 4-bit group.
The 4-bit half of a byte is sometimes called a nybble.

The hexadecimal notation represents the binary patterns,
but the commands themselves are further abstracted into
verbal descriptions. The verbal descriptions are called
mnemonics, and the mnemonics are used for the
construction of source code. Source code is a readable,
quasi-verbal description of the processor actions that
make up a complete program.

Source code is made up of mnemonics for binary machine
commands, called opcodes, and the necessary information
to complete the command, called the operand. Opcodes
and operands — together with labels, origins, ends, byte
descriptions, comments, and other information -— make up
the complete source listing. The source listing is entered
and edited using an assembler, and translated from its
source form to machine language by an assembler. The
assembler takes the source code and produces from it the
machine language, called object code.

The most common machine instructions move information
inside the processor, move information from the processor
to memory, and from the memory to the processor. These
are transfers, exchanges, stores and loads. The processor
manipulates this information through arithmetic and
logical functions. The arithmetic includes addition,
subtraction, multiplication, incrementing and decrement-
ing. The logic includes AND, OR, Complement, Negation,

Pt

VA
©

ol

T5A=ASCY| Z
D BA = Command DECB

§

——————ry
1
0 8 AT I N A

T§ IHEAERNN NSNS

=T 1]
NYeBie [/To] /0]
BYe [o[/[/T/T7]e]7]

LPA #+20

B 86

N

/000 o/ 0 1000 O/ /0

TFR

]

EX

Bt

(X,

[NHERERT

CLRA

RELISTER.
TRXY
IMMEDIATE.
LDX #$0400
EXTEMDED
LDY #1234
DireCT

LoX {$33
INDEXED

LB $41,X
INDIRECT

Loa [#19,Y]

FPOSITIVE.

ol /]o[s]o[T/]]

+
NEGATIVE.

[/{/1/]7]71/To]o]

Exclusive-OR. Other processor manipulations of data
include shifting or rotating bits left or right, testing for bits,
comparison with other data, clearing to zero, and special
functions for decimal addition and positive and negative
arithmetic.

The processor obtains its information by providing the
address of the data in external memory. The processor can
determine the address it needs in a variety of simple and
complex ways. These techniques are called addressing
modes.

Among the addressing modes in the 6809 processor are
inherent, register, immediate, extended, direct and
indexed. The inherent mode contains all the information
the processor needs to complete an instruction. The
register mode specifies information which informs the
processor what internal registers to use. The immediate
mode provides the processor with a value to use directly.
The extended mode gives the processor an address at
which it can find the information it needs. The direct mode
combines the special direct page register with information
tolocate the data in memory. The indexed mode calculates
a result from register information and fixed or variable
offsets, and uses the results of that calculation to find the
data in memory. Automatic incrementing or decrementing
of certain registers can be specified in the indexed
addressing mode. The relative mode instructs the
processor to find information in relation to its current
position in memory.

One of the features of the 6809 processor which speeds its
operation and makes access of data simpler is the indexed
indirect addressing mode. This mode applies to most of the
previous indexing modes, and permits the processor to
access information through a second level. The data is
found at the address specified by the data found at an
address determined by the processor from the instruction
of the operand. This doesn’t lend itself to a summary, so
refer to lessons 15, 16 and 17 for more.

Great program structure is achieved using the indexed
indirect addressing mode. By using an index relative to the
current position of the program counter, complete program
position independence within memory can be achieved.

The information actually received by the processor
through all these adddressing modes is simply one byte ata
time, but that byte can have many purposes. It can be a
simple number; it can be positive or negative (that is, be
signed); it can represent a character, or it can be part of a
memory address.

The memory addresses themselves are (from the
processor's viewpoint) identical. However, their
arrangement within the Color Computer is somewhat
different and quite specific. Because of the synchronous
address multiplexer (the SAM), the memory addresses
(known as the memory map) are organized for special

Learning the

Course summary

* Describe relative addressing.

The mode in which the
information is found relative to
the position of the program
counter,

* What are the levels of
addressing?

Non-indirect and indirect.
* What does SAM mean?

Synchronous Address

Multiplexer.

* What is found from $000R t{o
$7FFF in the Color Computer
memory map?

RAM (read-write mesory).

* What is found from 5608 to
$9FFF in the map?

The Extended Color BRSIC ROM
{read-only mewmory).

* Hhat is found from $ABMR to
$BFFF in the map?

The Color BASIC ROM.

+ What is found from $CO08 to
$FEFF in the map?

Cartridge ROM, when plugged in.

What is found from $FF@@ io
$FFFF in the map?

Vectors and 5AM registers,
control, ports, video graphics
display, processor speed, video
addresses, and other functions.

* What is assesbly?

The process of converting source
code (mnemonics) into object
{binary) code.

What is disassembly?

The process of translating

binary code inte a source
{wnemonic) listing.

6809 s

Course summary

¥ What does VDG mean, and what

is its purpose on the Color
Computer?

VIG weans Video Display
bereratory it is used for
alphanuweric, semigraphic, and
high-resolution graphic and

coior display.

¥ What does Hz mean? What does
it mean when it is said that the
Color Computer has a .89 MHz
clock?

Hz wmeans Hertz, clock pulses per
second; a .89 MHz clock means a
master set of pulses occurring
approximately 90,000 times per
serond.

* What is a position independent
program? What addressing wode
is essential to position
independent prograsming?

R machire language program
designed to run correctly no
matter where it is located in
memory is position independent.
Relative addressing is necessary
for position independent
progransing.

* What is an integer?
A number, positive or negative,
which contains no fractional or

decimal part.

+ What is
number?

a floating point

A number, positive or negative,
which contains a fractional or
decimal part.

214 Lesson 24

purposes. From the start of memory to address $7FFF is
reserved for read-write memory, or RAM; the next four
blocks of memory (starting at $8000, $A000, $C000 and
$EO000) are reserved for read-only memory, or ROM, and in
the Color Computer are used for Extended BASIC, Color
BASIC, and cartridge ROM. The last block is unused in the
Color Computer. RAM may be substituted for ROM under
certain conditions,

The last 256 bytes of memory are reserved for vectors and
control, ports, video graphics display, processor speed,
video addresses, and other functions. By writing
information to the SAM, these functions can be turned on
or off. Among the most important functions designed into
the Color Computer are: control of the cassette and printer
output; selection of 16 different low-, high-, and medium-
resolution color graphics modes; RS-232 communications
input and output; keyboard input; input from joysticks or
other analog devices; control over the processor’s clock
speed; output of sound; determination of available memory
and selection of the type of memory arrangement; control
of and storage of vectors for interrupts.

Source code is normally assembled using an editor/
assembler package, but hand assembly can be performed.
For hand assembly, a list of opcodes and their respective
hexadecimal equivalents is necessary. Also, it’s essential to
have a description of how each opcode works, the flags it
affects, and how its operands are constructed and used.

Assembly, whether by hand or using an assembler, is a two-
pass process. During the first pass, the opcodes are
assembled and put in place, and during the second pass the
operands are created, calculated or otherwise determined
directly from the operand information in the source listing,
or from the labels used in the listing.

During the assembly process, the automatic assembler
detects and reports errors. Hand assembly will reveal those
opcodes or operands which are not permitted according to
the information provided in the processor’s data booklet.

Even correct source code can produce incorrect results,
depending on the hardware configuration of the computer.
In the case of the Color Computer, the most cbvious
conflict is with the standard ASCII codes and the video
display generator, which uses a different arrangement of
the four groups of 32 characters. These hardware conflicts
are resolved by the programmer through debugging in
combination with a careful reading of the software aspects
of the hardware documentation.

During hand assembly, the timing of instructions may be
extremely critical. Especially during sound or
communications processes, the timing of each instruction
must be calculated. This timing is based on the computer’s
master clock frequency, which is specified as Hertz (Hz) or
clock cycles per second. All the timing information is
provided as part of the processor’s data booklet. Some

Not LBED

ZoM
PACK
COLOR
BASIC
EXTENORD
BASIC

SPECIAL.
VECERS

OCTA YF
oc9s SE
ocyc |Fgz
OCTE EP/
ocAg

$£2]1 = ASC
41 = VoG

UBeK

CLRA
cLRB
TFR DY
TER D, X

ny
4

TefMefTleMefT
g

,00000//2,
SECONDS

Course summary

1011700001
©I0/ /010, ., .

10/110777.1—
o/e1i0/0. ..

EXEC. ADDRESS
USR. (ARGUMENT)

timing is consistent with every occurrence of an instruction,
other timing depends on the character of the operand.

The goal of position independent programming — that is,
programs that will load and execute in any area of memory
— can be achieved with the 6809 processor. Position
independence is achieved using program-counter relative
instructions (,PCR instructions), load-effective-address
commands {LEA), long and short subroutine branches, and
long and short program counter branches (simple, simple
conditional, plus signed and unsigned conditional). By
structuring the program around modular subroutines, both
clarity and position independence can result.

Among the less clear aspects of programming is the
handling of floating-point numbers, that is those numbers
consisting of both an integer and fractional part. The
representation in the Color Computer is as a power of two
exponent plus a four-byte mantissa. This achieves an
overall accuracy of ten digits and an overall range of ten to
the plus-or-minus 38th power.

Using these numbers, and using BASIC at all, requires an
understanding of its handling of free memory, how it loads
machine-language programs, and the accessing of machine
language programs via EXEC and USR. BASIC’s USR
command permits direct transfer of numerical or text
information to a machine-language subroutine. BASIC’s
VARPTR command permits access to BASIC variables for
use by a machine-language subroutine, and also provides a
unique method of packing a machine-language program
into a BASIC string variable in a program line.

The 6809 processor was created with interrupts in mind.
Interrupts are hardware signals which cause the processor
to set aside its current program and perform an interrupt
service routine. Interrupts are use to provide accurate and
program-independent timing and control functions.
Hardware interrupts IRQ, FIRQ and NMI are used on the
Color Computer; software interrupts SWI, SWI2 and
SWI3 are used in ZBUG and in other kinds of program
debugging, and for fast operating system subroutine calls
on other kinds of computers.

Interrupts may be used for very fast timing, such as for
synchronization with the video display. Video signals are
used for interrupts on the Color Computer, and can be used
as ordinary interrupts or in combination with the SYNC or
CWAI commands for complete synchronization with the
monitor picture.

The process of creating complete assembly language
programs involves thinking the application through,
creating a structure, writing modular subroutines, linking
together the individual pieces, and debugging the whole.

Your Micro Language Lab course in Learning the 6809 is
over, but your facility in programming has just begun. Now
that you've reached this point, many earlier programs will

Learning the

* What BASIC comsands are used
for accessing sachine language
programs? What does each mean?

EXEC, USR, DEFUSR, VARPTR, POKE
and CLORDM. EXEC means execute
a machine language progras at
the given entry point (starting
address). USR means execute a
wachine language oprograms, and
transfer a variable fros BASIC
to it. DEFUSR defines a machine
language program entry point
{starting address). VARPTR
means variable pointer, and is
used to determine the position
of a BRSIC variable in memory,
It can be used for packing
machine language programs into
BASIC string variables. POKE

places a byte directly into
WEHOrY. CLDADM loads binary
information directly inta
WEMOIY.

+ What are the 6889 interrupts?

Hardware interrupts NMI, FIRG,
IRD and software interrupts SWI,
SWIZ, and SWI3.

¥ What happens when an interrupt
occurs?

The processor completes its
current instruction, saves
important machine information,
and services the interrupt.

* What coemands stop processor
operation and wait for an
interrupt?

SYNC and CWAL.

* Your course in learning the
68089 is now complete. 1 welcomwe
your reaction, especially to
this programmed learning
section. Please send your
comsents to me, Demnis Kitsz,
Green Mountain Micro, Roxbury,
Vermont 83669,

6809 us

Course summary

216

Lesson 24

begin to make more sense. Please review this course lesson
by lesson, continue to use the question-and-answer
programmed text in the margins, and try each of the
example programs. The ability to program the 6809 — and
all its smart cousins — is now yours.

I'm your programming guide, Dennis Kitsz. Good bye.

