INCA
X+

TMP

Have you ever typed in a long assembly language program
listing from a magazine, accepting on faith that it would
work on your Color Computer? And then finding out that
your XYZ disk system or your Apex memory dewormer was
already using that area of memory? Within certain
limitations, that inflexible approach to memory use isn’t
necessary any more, Utility programs — especially those in
semi-permanent installations such as the XYZ disk or
Apex dewormer — should be able to be moved to other
areas of memory and still perform their advertised
functions. Until the introduction of the 6809,
microprocessors couldn’t offer this as a standard feature.. ..
a feature known as Position Independent Programming.
Your Color Computer can do it. Position Independent
Programming is the topic of this session.

To understand position independence, you have to
understand the limitations of position dependence. Have a
look at the program in the book; the mnemonics read:

1086 8E 1234 LDX #$1234
1883 1P8E 5678 LDY #3$5678
1887 B6 FF28 LOOP LDA §FF2p
1088 27 93 BEQ LATER
1pgC 7 1p@7 JHP LOOP]
1p8F 7F ppBl LATER CLR $@681

There’s nothing especially useful about this program, but
it’s good enough code. The A accumulator is being loaded
from what looks like an input port address, and branching
tothe label LATER if the loaded valueis zero. If it’s not, the
program jumps back to the position marked LOOP.

But what if you needed to move this program from address
$1000 to, for example, address $2000? Well, if you were the
programmer, you would simply load the source code into
EDTASM+ andre-assemble it at the new origin. But if you
had purchased the program and you didn't know its
structure or contents, but nevertheless needed to move the
binary code from $1000 to $2000, something unhappy

Learning the 6809

I sigh at the prospect of having
to disassemble, examine and
relocate some assembly Ianguage
agplications prograss -
spreadsheets are one example -
faced with their enormous size
and complexity. This usually
happens when I want to tiptoe
around some special printer or
video driver I've created. With
6689 oprograms I’ve had the
chance to be pleasantly
surprised, since some not only
can be located easily in other

areas of meNory, they
automatically relocate
themselves to respect memory

limits and other configurations
you've set ahead of time.
Machine language programs which
run independent of their
position in wmemory is the
exciting goal of this session.

* Bhat is an addressing mode?

The way a machine language
progras gets its information.

* What addressing mode is JWP
$1234?

Extended addressing.

* What addressing wmode is BRA
LOOR?
Relative addressing.

155

Program counter relative

¥ Relative addressing is
relative to what?

The program counter (PC).

* How does BRR $FE differ frow
JMP $3456 if both instructions
begin at address $3456?

They differ in that BRR is 2
bytes and relative addressing,
whereas JWP is 3 bytes and
extended addressing,

* How is BRA $FE similar to JMp
$3456 if both instructions begin
at address $34567

Both are endless lcops.

% Is BRA $FE an endless loop if
it appears at address $3453?

Yes,

* [s JHP $3456 an endless loop
if it appears at address $34357

No.

* What happens to JMP $3436 if
it is moved to address $34557

The desired opcode JHP ($7E) is
now at $3455, The program
counter peints to address $3456
where it finds $34 56 instead of
$7E, $3% 36 isn’t an
instruction, but the processor
thinks it is, executing $34 56
-- PSHS U, X, A,B. Crash'

¥ What do mnemonics BEQ and BNE
mean?

Branch if equal to and branch if
not equal to.

* What do mnemonics BLC and BCS
mean?

Branch on carry clear and branch
on carry set.

156 Lesson 18

would occur. Everything in the program would seem
perfect until it reached that jump to label LOOP. As far as
the binary code is concerned, that jump is specifically to
address $1007. $1007 is an absolute, fixed address; with
the program now residing at $2000, trouble would be on the
way. By contrast, the program branch to label LATER is
relative addressing . . . the branch is measured from the
current position of the program counter. Do you see that?
JMP goes to a known, numbered, fixed memory location;
BEQ moves to a new position relative to wherever the
program is now.

Now, I diduse JMP in this example whenI could easily have
used branch always, BRA. But what if the jump were to an
address 5,000 addresses away? An ordinary branch can’t
move that far, since it’s limited to relative movement
between +127 and —128. And what about subroutines?
The opcode JSR also requires a fixed address. And then
there’s always the problem of loading X and Y registers
with the locations of important tables of information found
within the limits of the program. How can these memory
locations be identified if not by their fixed locations? Those
are the frustrating questions of position independence:
how to avoid specifying a fixed, numerical address
anywhere in the program.

Well, you can probably guess that I wouldn’t be asking
those rhetorical questions if I didn’t already have an
answer. And you're right. The 6809 commands JMP and
JSR can be cashed in for the 6809’s flexible Branch and
Long Branch commands. Not only can you execute long
branches to any relative position throughout all of memory,
but you can perform long branches to subroutines in any
relative position throughout memory. And those load
immediate instructions can be cashed in for what’s known
as “‘program counter relative” indexing.

The price you pay for these relative branches or indexings
is an additional clock cycle or two, plus a slightly different
process of thinking. Everything can become relative to the
program counter, not just short and long branches, but
evenloads and stores. Loads and stores canmake use of the
special “,PCR” version of the indexed addressing mode.

Before 1 get carried away with the excitement of
generalities, I want you to do a little reading. Open your
MCB809E data book, turn to page 17, and read the section
headed “Program Counter Relative.” Also read page 18,
the heading “LEAX/LEAY/LEAU/LEAS.” Finally, turn
to page 32 and read the summary of the 6809’s short and
long branch instructions.

LDX 8 o000
weax HX
[Tenceme /+x]
X Becomes gloo/
LA X

Loass A
with comtents &
#ro00/

LY #$Hoco
LEAY $72A,Y
[eacccrare 24A+Y]
Y BECOWMES SH4TAN
e Y
Le. &
with cmtnts o

$49AA

“WCREMENT X"

THINK.

LEAX |,X

DECREVENT X

THINK.

LEAX -1, X

TER X, Y

PsHs X
PuLs Y

[
Stacx]

D &

Turn to the MC6809E data book, page 17, and read the section
headed “Program Counter Relative.” Also turn to page 18, and
read the section headed “LEAX/LEAY/LEAU/LEAS.”
Finally, turn to page 32 and read the summary of the 6809’s
short and long branch instructions. Return to the tape when
you have completed the reading.

Let me start with the LEA instructions, which are easier to
use than to describe; you can be looking at page 18 asI talk.
LEA (Load Effective Address) is really no mystery, it’s just
a highly jargonized name for an old, familiar concept.
Here’s how LEA came clear to me: There exist no unique
increment or decrement instructions for the 16-bit X or Y
registers in the 6809. Considering how often I wanted to
move these registers forward or back in memory, I thought
this might be a serious deficiency in the 6809’s capability.
Sure, you know that there are automatic increment and
decrement modes, but these require loading or storing
information to get them to work. So I spent some time
cracking my brains over LEAX and LEAY.

I discovered that Increment X is actually LEAX 1,X...that
is, make X become X with an offset of 1. Decrement X,
then, must be LEAX -1,X. It seemed clumsy then, but not
now. Maybe these are alittle less easy to think of oruse than
a straightforward increment or decrement, but they are
many times more flexible. If LEAX 1,X makes X become
X+1, then LEAX 2,X makes X become X+2. You're no
longer limited to simple increments or decrements. LEAX -
40,X makes X equal X-40. LEAY 12345,Y makes Y equal
Y-+12345. That was the key. I began to understand that the
clumsy phrase “load effective address” was a jargon-filled
way of saying the same thing that “LET” says in BASIC.
Whereas BASIC would say LET Y = Y+150, the 6809
assembly language says LEAY 150,Y ... load Y with the
effective address 150+Y.

But there’s more. Not only can X=X+10 by writing
LEAX 10,X, but X canequal Y+10 by writing LEAX 10,Y..
.or Y can equal S-50 by writing LEAY -50,S ... or U can
equal X by writing LEAU 0,X. In fact, depending on your
requirements, the 6809 processor offers three different
ways of making one 16-bit register equal another: you've
got TFR X,Y. Then there’s PSHS X followed by PULS Y.
And then you can LEAX 0,Y.

Here’s more about Load Effective Address. You can use
the A, B or combination D accumulators as variable offsets.
For example, X can be made equal to A plus X by writing
LEAX A,X.

But by far the most versatile and powerful application of
the LEA instructions is in the writing of position
independent programs. In the programs I've presented so
far, I've always loaded the X or Y registers with specific
values. For example, in the Life program that was

Learning the

Load effective address

% What is the branching range of

BRA {and other branch
instructions)?
PC-128 to PC+127 (PC-488 to

PC+$7F),

What does LBRA mean?

Long branch always.

* What is the branching range of
LBRA (and other long branch

instructions)?

* PC-32768 to PL+32767 (PC-$500Q
to PC+STFFF).

* What addressing mode is EER
LODR?

Relative addressing.

¥ What addressing mode is LBEQ
L0OP?

Relative addressing.
* What does LER mean?

LER peans Load Effective

Address.

+ What is the effect of LEAX
1,07

¥ becomes X+,

% What is the effect of LEAX
$45, X7

¥ becomes X+$435,

* What is the effect of LEAX
1,Y?

X becomes Y+,

¥ What is the effect of LEAX
-5,Y?

X becomes Y"s-

What is the effect of LERY
12345, Y?

Y becoses Y+12343 (Y+$3839),

6809

Simple branches

*IfRis 4 and X is 4100,
what is the effect of LERX A, X?

¥ becomes X3, that is, X
becomes $1832.

*# If X = 51000, give the value
of ¥ after:
TFR X, Y

Y becomes $1080,

If X = 61008, give the value
of ¥ after:

PSHS X

PLS Y

Y becomes 1000,

*If ¥ = $1008, give the value
of ¥ after:
LEAY 8,X

Y becomes $1088.

¥ If X = %1018, give the value
of Y after:
LERY -1b,Y

Y becomes $1060.
What does LER mwean?

LEAR means Load Effective

Address.
¥ What does ®,PCR™ mean?

" PCR" means program counter
relative mode.

If the instruction LDX #ARITHI
is found at address %1089, and
label ARITH! points to $2000,
what is X after the instruction
is executed?

X points to $2008.

#If the instruction LDX
ARITHL, PCR is found at address
$1008, and label ARITHI points

to $2008, what is X after the
instruction is executed?

X points to $2000.

158 Lesson 18

completed in the last session, you remember that the X
register was pointed to atable of information by loading the
X register with the actual address of the table. I wrote
LDX #TABLE. But there’s another way, a position
independent way.

I might instead have written LEAX TABLE,PCR. That’s
LEAX TABLE,PCR. And that says “Load X with the
effective address calculated from the distance between the
present position of the program counter and the address of
the table.” In other words, I know the distance from here to
where I'm going. By giving that distance to the 6809, it can
calculate the resulting address, and give that result to the X
register.

No longer are you constrained to a fixed address. Instead of
demanding to know, “where is it?”, the 6809 need only ask
“how far is it from here?”. I'll get back to Load Effective
Address; in the meantime, just remember that when you
see LEAX, think LET X. Yousee LEAY 10,Y and you think
LET Y be 10 plus Y. Purists might want my head for that,
but I'll risk it. When you see LEA, think LET.

Among the other position-independent commands are the
branches. You've been using the branches since early onin
this course, but I've never given them any formal time. T'll
make up for that now.

Like the program counter relative instructions, the
branches are also based on “how far from here?”’ rather
than “where?”. In all, there are 62 variations of relative
branches, depending on how you think of them. Turn to
page 32 of the MC6809E data book. You’ll see the branch
instructions in four groups: simple, simple conditional,
signed conditional, and unsigned conditional. - Some
overlap, serving dual purposes. I'm going to describe the
short branches, but keep in mind that the long branches are
identical in principle and application. The only difference
is that the short branches reach a span of 256 bytes, and the
long branches reach a span of 65,536 bytes.

Simple branches are just that. When the instruction
decoder finds a simple, it follows the command, calculates
the new address, and hands it to the program counter.
These three are branch always (BRA), branch never (BRN)
and branch to subroutine (BSR). Two of these make sense;
but what about “branch never”? “Branch never” is one of
those delightful bizarrities of computer logic. “Branch
never’ exists as a default of the processor’s architecture.
All branches have what are called true and false versions;
branch always is the true version, so “branch never” is the
false version. Branch always makes the branch, very much
like the command JMP. “Branch never” continues with the
main program flow. But keep it in mind; it’s surprisingly
useful. Should you be doing critical timing where every
machine byte and clock cycle counts, remember that no
operation (NOP) uses one byte and 2 cycles; “branch
never’” has the effect of a NOP, but it uses two bytes and 3
cycles; and long “branch never” also has the effect of a
NOP, but it uses 4 bytes and 5 cycles.

LEAY OX

o\
O (X %7

LEAX TABLE, RCR

te) 296D |
e
[39ce |
34|
e
18LB
BYTES| A
:i'ib?'Q
2o
202
210/
2700

R,
zoFFi§

Mo \WhT
2 N encoate [
C AR
OFFSET = (905
PC. =270/

EA =37

S X: 29¢,¢C

BRANCH ALWAYS
(BRA)

BRACH N MINUS
(emd

<L

|2 TAPTY

LNk
[t Lo)

pe-t | $oz

ve-2 [Eea |/

PC-3 lagoc L/
PC-Y | emPA L

A
vz [ASLB |4F
Pt {523 | /!AZ\t
TR Lee i

P2

-1 | BE2 L
Pe | BT |
PL-3 E@A& -
P [CMPA |

Enough of the simple branches; on to the simple
conditional branches. These are changes of program flow
conceived of as direct responses to the condition codes.

1. Branch on minus and branch on plus are in
response to the state of the negative (N) flag.

2. Branch on equal and branch on not equal
are in response to the state of the zero (Z) flag.

3. Branch on overflow set and branch on
overflow clear respond to the state of the
overflow (V) flag.

4. Finally, branch on carry set and branch on
carry clear respond to the state of the carry (C)
flag.

Those eight conditional branches should make sense to
you, since you've used most of them in programming
already.

The signed and unsigned conditional branches take
account of not only the flags but also the type of arithmetic
being used, in order to produce a composite result and
make a branching decision. The signed conditional
branches assume that you are using signed arithmetic, that
is, where you are thinking in terms of positive and negative,
so that the most significant bit is important to the
calculation. There are three types of signed conditional
branch, arranged five ways:

1. Branch on greater than (BGT), and its
opposite, branch on less than or equal to
(BLE). Remember that in signed arithmetic,
$01 is greater than $FE, that is, 1 is greater
than 1.

2. The complementary instructions to the
previous ones are branch on greater than or
equal to (BGE) and branch on less than (BLT).

3. Signed branches also make use of the
familiar branch on equal (BEQ) and branch on
not equal (BNE).

4 and 5. The final two pairs of branches are
identical to the first to pairs, but are conceived
in reverse. At the end of this lesson, take the
time to examine the four tables at the bottom
of page 32 of the data booklet, and try to
clarify how the pair “branch on greater than”/
“branch on less than or equal to” is different in
conception from “branch on less than or equal
to”’/“branch on greater than”.

The remaining branch types are the unsigned conditional
branches. These are effectively identical to the previous

Conditional branches

* What does BSR mean?
BSR means Branch to subroutine.

What do mmesonics BGT, BGE,
BLT and BLE mean?

Branch on greater than, branch
on greater than or egual to,
branch on less than, and branch
on less than or egual to.

What do mnewonics BRA and BAN
wean?

Branch always and branch never.

In unsigned arithmetic, which
is the higher number, $7F or
$60?

$7F is a higher number than
400,

* In unsigned arithmetic, which
is the higher number, $AR or
$557

$A0 is a higher number than
$35.

% In signed arithmetic, which is
the greater number, $AA or $337

$35 (being positive) is greater
than $AR (being negative).

In signed arithmsetic, which is
the greater number, $FF or 087

$0@ is greater than $FF (-1).

* What specific kind of
instruction is BGT (branch on
greater than)?

BET is a signed conditional
branch.

* What specific kimd of
instruction is BHS (branch on
higher than or same as)?

BHS is an unsigned conditional
branch.

Learning the 6809 159

Selecting branches

tIf A contains $FF and is
compared to memory containing
$38, would the branch BGT be
taken or not? Why?

It would not be taken because
$FF (decisal -1) is less than
$08, and BT is a signed
conditional branch,

* If R contains $FF and is
compared to wmemory containing
$88, would the branch BHS be
taken or not? hy?

The branch would be taken
because $FF (decimal 255) is
higher than %88, and BHS is an
unsigned conditional branch,

% bhat addressing mode are BHS
and BET?

Relative addressing.

* What addressing wmode is JWP
$1234?

Extended addressing.

¥ phat addressing mode is JMP
($1234)7

Extended indirect addressing.

+ What does the mnemsonic LBLO
mean?

Long branch if lower than.
¥ What addressing mode is this?
Relative addressing.

¥hat is the branching range of
BLO?

The range is -128 ($8@) to +127
($7F) relative to the progras
counter.

* What is the branching range of
LBLO?

The range is -32768 ($8028) to

+32767 ($7TFFF), relative to the
program counter.

160 Lesson 18

ones, but negativeness or positiveness do not affect the
result. These branches are:

1. Branch on higher than (BHI), and its
opposite, branch on lower than or same as
(BLS). In unsigned arithmetic, $FE is greater
than $01, that is, 254 is greater than 1.

2. Branch on higher than or same as (BHS),
and its opposite, branch on lower than (BLO).

3. The familiar branch on equal (BEQ) and
branch on not equal (BNE) are also part of the
unsigned set of branches.

4 and 5. Finally, there are the inverse pairs
of the first sets of conditions. Again, examine
these tables at the end of the lesson.

So how do these all fit together? How do you choose among
simple conditional, signed conditional, and unsigned
conditional branches? Here’s how:

® [f you're using the flags directly, such as
with rotations, yes/no comparisons, etc., use
the simple conditional branches. If you're
thinking about the condition codes per se, then
you want to use simple conditional.

® If you're doing arithmetic, such as creating
mathematical subroutines, or if you're using
numbers transferred from BASIC, use signed
conditional branches. Real numbers are
positive and negative, so use signed conditional
branches when doing that kind of math.

® If you're making a series of value
comparisons or checking table entries, then use
the unsigned conditional branches. These are
similar to the simple conditional branches,
except they allow you a little more flexibility or
programming compactness.

Some experimenting will make the choices clear. I've got a
program I think you’ll like. Get your computer on and up in
Extended BASIC. When you're ready, type and enter this
BASIC line; follow in your book:

PCLEARS : PMODE4, 1:PCLS: PMODE4,5:PCLS: CLOADM: EXEC

Your computer will be ready and searching for an object
code program. It's coming up.

BEG,
BNE.

BHl,
BAS,

BLS

IF A=%2],
THEN..

FF

zZ
Zi

f—— =By ot

Program #28, an object code program. Turn on the power to
your Extended Color BASIC computer. When the cursor ap-
pears, type CLOAD and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, type EXEC
and press ENTER. The program will execute automatically. If an
1/0 error occurs, rewind to the program’s start and try again. For
severe loading problems, see the Appendix.

BASIC started by clearing an area of graphics memory, so
what you should be seeing is a clean high-resolution
graphics screen with a narrow, random-looking band of
colors walking down the screen from top to bottom. At the
same time, a continuous tone is coming from the
loudspeaker. The tone hiccups each time the colored band
moves down the screen.

Before you sigh “so what” to yourself, let me tell you what
you're looking at. The band of random color isn’t random at
all. It's the program. The program itself is being displayed
as if it were screen information. That shouldn’t be a
surprise, since memory is memory so far as the
microprocessor is concerned. But it can be disconcerting to
actually snoop into the program’s private memory lair.

Now to my point. This band of color is MOVING. The
program is producing a tone, then moving itself, erasing its
trail, and re-executing in a new position in memory.
Eventually, the loudspeaker will let out a strangled squawk
and probably return an “OK” to your screen, as the moving
program crashes into the un-writable BASIC ROM.

This is a completely position-independent program. When
you're ready, you can load the assembly source code and
have a look. I'll be back for the next lesson and a complete
walk-through of this program, and a re-explanation and
summary of the process of position-independent code.
Enjoy this one.

Program #29, an EDTASM+ program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the program's start and try again. For severe loading
problems, see the Appendix.

raaa Qalan ORG s1a0a
Q@11@ *
FFz@ @aalz@d SPORT EQu $FFz@
aanA @ai3@ DIFFER EQU LAST-FIRST
aal4@ =

22152 * DISABLE THE INTERRUPTS
ilgad 1A e QZ16d FIRST ORCC #E50

aaiva *

2@18@ % DPEN THE SDUND LATCH
1@az 86 3C @@l 3a LDA #$3C
1@@4 B7 FFE3 eaza sTA $FFZ3

Qa1 »

Learning the 6809

Position independence

% How many groups of branches
are there?
There are four
branches.

groups of

% What are the four kinds of
branches?

Simple branches, simple
conditional branches, unsigned
conditional branches, and signed
conditional branches.

* What is a position independent
progras?

A program designed to run

correctly no matier where it is
located in mewory.

161

Program #29

162

Lesson 18

1aa7
10e9
1aac
10@E
l1o@F
i@g11

1@14
117
ta1n

1aiD
1@&1F

lezz
1024
igz7
1a&w|
iazc
1ezE

lacF 2

le31

1@33
1e35
1238
ie3C
1Q3E
1@4@
1341

1@43

1045
1@47
1@43
1@4R
1@4F
1@51
ien2
1@53
1a56
1a58
1e59
1@SE
1@Sb
1@5E
106@

1261
1263
12635
1266
1068
126R

1@6R
1@eD
1@6F
1a71
1a73
1@75
1877
1@73
1@78
1@7D
1a7F
1@a81
1283
1285
1@87
12898
128
1@8D
1a8F

34

26

39

a7
FFC6E
a1

FH
FFCD

FFCS
FFC3
FFC@

c7
FFag

AR
aC D9
83 FFS36

aa

FE

65

FF
ez
3E
a8p eaiC
a6

FFz@

Fa
oz

E7

az
a6

FD
az

1F1iC
1316
1312
@DRE
asee
@403
aza1
Qoo
Ldrdeld
aaal
azds
a6ces
aRac
@Fig
1417
1B1E
2124
27&a
eD3@

xazzd
aaz3a
aRe4@
2az=5a
nazea
eaz7e
agcoa
apz3e
aazea
duiia
il gey=dry
QR332
Ra34d
A@3ISA
Q362
aa37a
a382
@a33@a
@aLQR
0410
BaLZG
Q@43
QR44Q
aR45@
aa46@
Q@470
da4spR
2430
xasaa
eas1e
Qeasza
2a53@
eesS4@
easse
aas56e
aas7e
easS8e
L.ltahe 1
600
ae61@
agez@
@ade3@
aRueLe
a2aesa
Q066
aec7a
aos8@
aa63a
ra7aa
aa71@
Qa7z@
aa73a
Qa74@
aa75@
Q@768
aa77e
aa7B@
aa73a
=l
aa81a
Qeesza
aas3a
Qass@
Qaasa
aas6a
ags7@e
agsse
Qas3&
Lldeldg
ea31a
@@32@
2a33a
aa34Q
aasse
aagv6d
@a37a
@aa38@
@33
@loe@
ai1o1@
alaca
@r1a3@
Qlas@

* SELECT VIDED ADDREGS

LDE #&Q7
LDX #EFFC6
VIDED sSTAR 5 X++
DECE
ENE VIDED
37A S$FFCD
*
SELECT GRAPHICS MODE
STR $FFCS
STA $FFC3
87TA SFFCa
*
* SELECT COLOR SET, MODE
LDA #4C7
STA SFFR2

*

ERASE PREVIOUS PROGRAM

ERASE LDE #DIFFER
LEAX FIRST, PCR
LEAX ~DIFFER, X
CLRA

KLEEN STA . X+
DECB
BNE KLEEN

*

* BEEP FOR ALL TO HEAR
BSR BEEP

*

» TRANSFER PROGRAM AHEAD
LDE #DIFFER
LEAX FIRST, PCR
LEAY LAST, PCR

LODP LDA o X
STA LY+
DECE
BNE LOBP

*

* AND BO TO MOVED PROBGRAM
ERA LAST

*

HEEP L.DA #$FF

REEEEP PSHS A
LDA #$3E
LERX WAVES, PCR

WAVER LDE A, X
ASLE
ASLE
8TE SPORT
ESR DELAY
DECA
BNE WAVER
PULS A
DECA
ENE REEEEPR
RTS

*

DELAY PSHS A
LDA #$06

DLODP DECR
BNE DLOOP
PULS A
RTS

»*

WAVES FDE $1F1C
FDE $1916
FDE $131@
FDE $@DOR
FDE $0806
FDE $0403
FDE sozal
FDB $0000
FDE $0Q0Q
FDE +QaQ1
FDE $0204
FDR $0608
FDE $QARC
FDR $QF 12
FDE $1417
FDE $1E1E
FDE $2124
FDE $&72A
FDE $=D3@

1@31
1293
1@33
1a37
1899
1a3B
1@3D
1@3F
lanl
12A3
1@AS
1@R7
10R3

Qaaaa TOTAL ERRORS

1eo@

@lasa
Qilaca
a1a7a
ale8a
@1@3@
ai1ea
aliie
arica
@113@
al1i14@
@a115@
a116@
@i117@
@a118@
@119
@aizo@
alzi@

LAST

FDE
FDE
FDE
FDE
FDH
FDE
FDE
FDR
FDER
FDE
FDB
FDE
FCE

EQuU

END

Learning the

3235
$37393
$3A3C
$3D3E
$3E3E
$3E3E
$3D3C
$3B39
3735
$333@
$ZEER
$2885
22

FIRST

Program #29

163

164 Lesson 18

Welcome back. During this session I want to review the
concept of position independent programming, and to take

you through the

self-moving,

position-independent

program from the end of the last lesson. Get that source

code loaded again.

problems, see the Appendix.

Program #29, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the program’s start and try again. For severe loading

129 aaiae
kalie

FFZ@ QALZd

2RAA 20132

aai4e

aRa1se

1o@@ 1A Se Q2162
aai7a

2182

1a@2 86 3C aa19a
10d@4 B7 FFE3 xazee
ad21@

az2e

1@@a7 Cs a7 adz 30
1069 8k FFC& aoz4@
1@t A7 81 2ez50
12QE S5A *R26@
12@F 26 FB ae27e
111 EB7 FFCD Qazso
ag29e

@a3za

@14 07 FFCS a3
1@17 R7 FFC3 ea3ze
L1Q1A B7 FFCe e@3se
QAA34Q

ae3s5a

121D 86 c7 @360
1Q01F H7 FFaz ea37d
*a38@

20390

1022 C6 AR Qa4a2
1024 3@ 8C D9 20410
1ee7 3@ 89 FF356 @4z
1028 4F 00430

ORG s102Q

*

SPORT EQU SFF20

DIFFER EQU LAST-FIRST

*

DISABLE THE INTERRUPTS

FIRST ORCC #85Q

*

* OPEN THE SOUND LATCH
LDA #83C
sTA $FFE3

*

* SELECT VIDEO ADDRESS
LDE #$07
LDX NSFFCE

VIDEG STA , X4t
DECE
BNE VIDEOD
sTA $FFCD

*

SELECT GRAPHICS MODE
sTA $FFCS
sTA $FFC3
sTh SFFCO

*

SELECT COLDR SET, MODE
LDA #eC7
sSTA $FFz2

*

* ERASE PREVIOUS PROGRAM

ERRSE LDB #DIFFER
LEAX FIRST, PCR
LEAX ~DIFFER, X
CLRA

Learning the

The position-independent program
really isn't all Just tricks and

gimmicks, Its real purpose is
to wmake the wmachine code
"transportable". BASIC is

transportable; you don't need to
load it to a3 specific memory
location. You just load and
run. High-level languages have
to work that way, but machine
language had a hard time ...
until the 68@9.

% What is a position independent
progran?

A program designed to run
vorrectly no matter where it is
located in memory.

165

Program #29 reprise

166

Lesson 19

122C
122E
1a2F

1@31

1@33
1035
1238
1@3C
1@83E
1a4@
i41

1043

1045
1047
1043
1@4B
1@4F
1@51
1asez
1a53
1a56
ias8

15K
1@5D
1@5E
1e6@

1061
1263
1065
1066
1268
186R

1@6B
1@6D
1Q6F
1a7i
1@73
1475
1277
1@79
1Q7E
1@7D
127F
1281
1283
1@85
1Q87
1@89
1@8E
1aaD
1@8F
1@91
1093
133
1237
1@93
1 @3k
1@9D
1@3F
1@AL
10A3
1@AS
18R7
12A3

Qe TOTAL ERRORS

A7

=43

ac ce
8D QQ6E

an aeic

FF2@

F4

a2

E7

a2
@6

1ee@

Q@Qs44LQ
a45a
@a46Q
Q47
2a4B@
Qa49@
ea500
@es51Q
oas52e
ae33e
@342
eass5e

2560
oes7e

. s@nee

2233

. AP60e

(3]
ea6ze
aes3@
aa64@
28650
e&6R
eee7e
avs8e
269
ea7ee
a@71@
ea7eé
@730
oa74@
aa75e
e276@
20770
aa78@
aa79@
a8
oasie@
aosza
a@a3e
R84@
oase
R86R
aes7e
ep8se
an83Q
aa3ee
2912
e9ce
ee93e
20940
2asse
ea9ce
@e@37@
Qa38@
Q930
Q100
il
el1aze
ale3e
a1@4@
a125@
ai06@
ai1e7@
Qa128@
ai1a3e
@a110@
@2i111@
Qa11z@
21130
@114
2115@
alie@
a1i17@
@118@
al113@
@12Q@
a1z1@

KLEEN STA , X+
DECB
BNE KLEEN
*
+ BEEP FOR ALL TO HEAR
BSR BEEP
*
TRANSFER PROGRAM AHEAD
L.DB #DIFFER
LEAX FIRST, PCR
LEAY LAST, PCR
LOOP LbA . X+
“BTA s Y+
. DECH
BNE Loop
*
#+ AND BO TO MOVED PROGRAM
.. .BRA LAST
*
BEER - LDR HEFF
REBEEPR . PSHS A
? DA #93E
LEAX WAVES, PCR
WAVER LDE- A, X
ASLEB
ASLE
STh SPORT
BSR DELAY
DECA
ENE WAVER
PULS A
DECR
BNE REBEEP
RTS
*
DELAY PEHS A
LDA HE06
pDLOOP DECA
ENE DLOOP
PULS A
RTS
*
WAVES FDE $1F1C
FDE $1916
FDE 1310
FDH $@QDoB
FDE 2826
FDE $Q4@3
FDE saz1
FDE @002
FDE $QRQR
FDE so0a1
FDE sacds
FDE $0608
FDE $QAAC
FDE SAFIZ
FDE $1417
FDE $1E1E
FDE $2124
FDR $272A
FDE $2Dh3@
FDE $3235
FDE $3739
FDE $3A3C
FDRE $3D3E
FDE $3E3E
FDE $3E3E
FDB $3D3C
FDR $3B39
FDR $3735
FDE 3330
FDB $2ECHR
FDER 2825
FCR o2
*
LAST EQU *
*
’ END FIRST

AT QU Bioco
DiFFee EQU LAST—FeST

LEAX FIRST, RR

LockTE ASSEMBLY
L LEAX -$D7, PCR

aconre [EFEETTION]

L X = PC(-8D9)
LEAX - DIFFER X

Loae {resErB)
b Leax - BAA X

EXECUTION

CALCLLATE

Ly X= X-$AA

BEEP 1045

DELRY 1261

DIFFER @@AR

DLOOP 1065

ERASE 1@22

FIRST 1@o@

KLEEN 1@cC

LAST 1@AA

Loop 1830

REBEEP 1047

SPORT FF&@

VIDED 1@eC

WAVER 1@4F

WAVES 1@6B

The opening lines of the source code should look familiar to
you. Interrupts are disabled to keep the tone pure; the
sound latch is opened (recall that process from the Morse
Code routine); the video address $1000 is selected via the
SAM registers; high-resolution color graphics, color set,
and detail level are selected through an address port. Up to

that point, everything is as it has been.

The real differences begin with the routine labeled
ERASE. The value identified as DIFFER has been
calculated by the assembler from my labels LAST minus
FIRST. The first byte of the program I labeled FIRST, and
one byte after the last byte I labeled LAST. At the start of
the assembly listing, I have the assembler calculate LAST
minus FIRST... whichis, of course, the length of the entire
program. So accumulator B is loaded with the length of the
program.

There follow two significant instructions . . .

LEAX FIRST,PCR
LEAX -DIFFER, X

LEAX FIRST,PCR requests that the assembler compute
the distance from the program counter to the label FIRST,
and make the resultant address available for use by the X
register. In other words, after LEAX FIRST,PCR, the X
register points to the beginning of the program. Then
comes the instruction LEAX -DIFFER,X. That command
instructs the processor to let X equal the present X value
minus the value DIFFER. So the effect of those two
instructions is to point the X register to a place in memory
one program length before the program. Let me go through
that one more time. LEAX FIRST,PCRis a program-counter
relative instruction that calculates the distance between
the current position of the program counter and the label
FIRST, and assigns the resultant address to register X.
Using this technique, X ends up pointing to the start of the
program, without ever knowing what absolute address that
start actually is until now. After that,-

LEAX -DIFFER,X provides the X register with the effective
address X offset by -DIFFER. Let X equal X minus
DIFFER. X now points to a location in memory DIFFER
places back from its previous position, still without ever
knowing the absolute address beforehand. Again:
LEAX FIRST,PCR. Let X point to the address FIRST
places from the program counter. LEAX -DIFFER,X. Let X
point to the address ~DIFFER places away from its
previous position. No specific addresses involved . . .
position independent . . . program-counter relative.

Labled offsets

% How many groups of branches
are there?

There are four
branches,

groups of

What are the four kinds of
branches?

Simple branches, simple
condifional branches, unsigned
conditional branches, and signed
conditional branches,

* What 1s the branching range of
the branch instructions?

The range is -128 {%88) to +1&7
{$7F) relative to the program

counter,

What is the branching range of
the long branch instructions?

The range is -35768 ($8800) to
+32767 ($7FFF), relative to the
progras counter,

* What addressing mode are all
the branches, both long and
short?

Relative addressing.

* Relative addressing is
relative to what?

The progras counter,

+ $hat does ",PCR" mean?
Progras counter relative.
* What does LEA mean?

LEA means Load
Address.

Effective

Learning the 6809 167

Relocating a program

¢ What is the effect of LEAX
1, X?

1 becomes X+i.

+ What is the effect of LEAX
$43, X7

¥ becomes X+$43,

* What is the effect of LEARX
1,Y?

X becomes Y+l.

yhat is the effect of LERX
-5,¥?

% becomes Y-S,

¥ IfAiss32 and X iz $1009,
what is the effect of LEAY R,X?

X becomes X+, that is, X
becomes $1@3c.

% What is the effect of LEAX
1,7

¥ becomes X+i,

@hat 15 the effect of LEAX
-1,%?

X becowes K-i.

£ The BB@9 processor provides an
INCR comsand. What is the
squivalent of INCX, a fictitious
command?

LEAX 1,X

*+ The 6829 provides a DECA

command, What is the eguivaient
of DECX, a fictitious command?

LEAX -1,X

+ If the first byte of a program
is labeled START, what is the
effect of LERX START,PCR if the
program is ORGed af $108@7

X becowes $1008,

168 Lesson 19

The next four instructions fill up the memory area from —
DIFFER,X to FIRST with zeroes; the B register contains
DIFFER, the total number of bytes in the program. That is,
ablock of memory as long as the program from-DIFFER, X
to FIRST will be cleared to zero.

Following those contortions is a relative branch to the
subroutine BEEP. I'll get back to BEEP in a minute.

After the branch to and back from BEEP, the B register is
once more loaded with the program’s length. Following that

LEAX FIRST,PCR
LEAY LAST, PCR

Again using the program counter relative technique, the X
register is pointed to the beginning of the program, and the
Y register is pointed to the byte after the last byte in the
program. By means of a standard load-and-store loop —
which should be tiresomely familiar by now — the
information pointed to by X is transferred to memory
pointed to by Y, and both memory pointers are
incremented by one. The loop continues until B is
decremented to zero. In other words, a copy of the program
is made immediately following the end of itself.

The final instruction is the grabber. The program is told to
execute a branch to the label LAST. The LAST has
become the FIRST. The program, having just been copied,
is born again and seemingly begins anew in a fresh area of
memory. It once again sets up the video and sound
parameters — a redundant act I included for effect. At this
point, the reason for the ERASE routine presented earlier
should become clear. ERASE causes the previous program
to be cleared out of memory — the program hides its own
trail as it beeps and copies itself.

So what you see is a screen full of memory, and revealed on
that screen you are watching is a program that beeps,
duplicates itself in a new location, branches into its new
self, and eradicates its old self.

Chances are you wouldn’t ever need to write a program like
this. But you might want to write something like the BEEP
subroutine, a routine that you can stuff anywhere you like in
memory. Have a look at it.

Part of its structure should be familiar. The A registeris set
up as the length of the beep, and there are values being sent
out the sound port to the television speaker. But there’s
something new. LEAX WAVES,PCR (again using program-
counter relative addressing) points the X register to a table
labeled WAVES. So what’s this table?

It might look at first like a table of addresses. Itisn’t. It's a
63-byte reference table. .. these are bytes, not addresses. I
just wanted to save myself some typing by compressing
them the way you see them. So you can read this table as a

LOB #OFFER.
LEAX FIRST, PCR.
LEAY LAST,PCR

1,897

i

IPAVONT

M

HZE =

9.3
N
%D

L L

@B2~Zorp

¥

t

'
N
2

{

t

'

i

.

+
¥

&l
2
¥ 4
el
®

il
LIRS

(mzore [;rc\on:]

EXECUTE.
T
clowe-

ST’ SPORT

group of 63 bytes: $1F $1C $19 $16 $13 $10 $0D, etc.
Trans'ated back into the form in which I created them, they
read like this:

-BpR3p13
.0995276
.1983681
.2952265
.3891352
4791557
.5643887
.6439825

... and so forth. It’s actually a table of mathematical sines,
made positive and multiplied by a constant so thatthe table
falls into the range of positive integers 0 te 63. The reason
I've done this is because the Color Computer contains a 6-
bit digital-to-analog converter, a circuit which converts a 6-
bit binary number into an equivalent voltage. That voltage
can be used for a variety of purposes, including the
production of sound.

Idescribed this briefly when you were exploring the Morse

Code examples. This time you’ll be putting it to use. Move

back now to the BEEP routine itself. Notice that beginning
with the third instruction, the BEEP program loads the A
accumulator with $3E, points the X register to that table,
and then loads the value found at X indexed by A into the B
accumulator. The value is shifted to the left (from the low 6
bits to the high 6 bits, where the computer’s digital-to-
analog converter output happensto be wired). That value is
then stored at SPORT, the sound output address in the
computer. A brief delay is made, then the next element in
the table is acquired and output to the sound port, until all
63 elements have been used up. The routine then loops
until 255 repetitions of the table have been output.

The sine wave is the simplest of all musical sourds. By
creating a series of numerical values which outline a sine-
shaped wave and subsequently putting those values
through the computer’s 6-bit converter, an equivalent
sound wave js produced through the loudspeaker. It
sounds like the sine wave it represents.

Take a break now, and make some changes in the
subroutine. You can assemble and use the BEEP
subroutine separately, if you like. If you use it separately,
remember to turn off interrupts by using ORCC #$50, and
also to turn on the sound latch by storing $3C at memory
address $FF23.1'd like you to play around with the length of
the beep (found at line 630 being loaded into the A
register), with the frequency of the beep (found in the delay
loop at line 800), and with the quality of the sound (by
changing the values in the wavetable beginning at line 860).
When you're comfortable with how these routines work,
thoroughly review both this lesson and the previous one. I'll
be back with a summary of position independent
programming, and then Tll finish up this session by
introducing the remaining 6809E instructions.

Learning the

Waveform table
If the first byte of a program
is labeled START, what is the

gffect of LEAX START,PCR if the
progras is ORGed at $1234?

X becomes $1234.

* If the first byte of a progras
is labeled START, what is the
effect of LERX START,PCR if the
progras is ORBed at $ARAR?

X becomes $AARA.

+ What addressing wode is LEAX
WAVES, PCR?

Program-counter relative.
¥ What is a pseudo-op?

fAn instruction to the
assembler,

+ What pseudo-op places a single
byte in mewory?

FCB.

What pseudo—op places two
consecutive bytes in memory?

FDB.

* What pseudo-op places an ASCII
string of characters in wemory?

FCC.

¥ Does the Color Computer have a
digital-to-analog converter?

Yes.

* A digital-to-analog converter
converts what to what?

A binary number to an equivalent
voitage.

¥ At what memory location is the
Lolor Computer's digital-
to-analeg converter found?

At iocation $FF22.

6809 e

Branch ranges; MUL

¥ How many bits can be sent to
the Color Compuler’s digital-
to-analog converter?

6 bits.

What is the range (in binary,
hew and decimall of the Color
Computer's digital-to-analog
converter?

Binary 000002 to 1ii1li;
hexadecimal $8Q to $3F; decimal
to B4,

* The Color Computer's
gigital-to-analog converter
ranges Tfrom @ to 3 volts,
divided info &% steps. lero
output iz @/64thz, Ffull output
is b4/B4thsy that is, it has a
step size or resolution of
1/64th of the output. If CODGGR
is sent to the digital-to-analog
converter, what is the cutput?

Q00008 is @/64ths, or @ volis,

tIf 111131 is sent to the
digital-to-analog converter,
what is the ocutput?

111111 is b3/b4ths, or 4.921875
valts,

¥ If 101010 is sent to the
digital-tc-analog converter,
what is the output?

121010 1s 42/6Aths, or 3.28125
voits.

1f all the values from "OOGER
to 111111 and back to GOQBRD are
sent to the digital-to-analog
converter, what wili a graph of
the final voitage output look
iike? '

A triangle.

* If the Color Computer's
digital-to-analog converter were
7 hbitz instead of six, what
would be the step size (the

resolubion) ?

1/128th of the output.

170 Lesson 19

Experiment with the length, pitch and sound quality of the beep
in this program. The length of the beep is loaded into the A regi-
ster in line 630 of Program 29. The frequency of the beep is
found in the delay loop in line 800. The wavetable begins at line
860. When you are confident you understand the application of
these features, return to the tape.

Position independent programming, then, is the creation of
machine language in a way that allows the final assembled
binary program to execute anywhere in memory. This
quality of position independence is achieved by making all
memory pointers, program branches and subroutines
relative to the position of the program counter. In that way,
the processor never needs to know “where”, but only needs
to know “how far from here”.

Among the commands used with position independent
programming are the three dozen variants of the branch
(with its 256-byte range) and the long branch (with its
65,536-byte range). Branches come in simple form, where
they are always obeyed; in simple conditional form, where
their actions depend on the state of specific condition
codes; in unsigned conditional form for “higher” and
“lower” judgments; and in signed conditonal form for
“greater than” and “less than” judgments in with positive
and negative arithmetic.

The other commands to achieve positionindependence are
the LEA, orload effective address, group. When used with
in program-counter relative form, 16-bit registers can be
pointed to any location in memory by virtue of that
location’s position relative to the current position of the
program counter. It’s almost mandatory to use an editor/
assembler and labels to do this. For the experience, you
might try hand-assembling a few LEAX instructions in the
program-counter-relative mode.

The advantages of position independence are obvious; the
disadvantages are a slight increase in the amount of
programming code required, and a loss in execution speed.
For fast action games and high speed — where position
independence is hardly necessary anyway — compact,
address-specific programming is adequate and desirable.
For utility programs, mathematical subroutines, and other
semi-permanent programs {especially those which will be
used with other machine-language software), position
independence is virtually required.

Only a few commands remain in the 6809 instruction set.
Some you’ve come across, and some are brand new to this
course. One you've seen is multiply, MUL. When MUL is
executed, the contents of the A accumulator is multiplied
by the contents of the B accumulator, and the result is
placed in the combined D accumulator. This is an unsigned
multiply, meaning the full 8 by 8 bit multiplication is

WOLTIR

B K=

s

<]

X

ars&qu

W

ZZZZLL...

%O

@LOHANQ.

’W wiTH (A“?By

7]

(apca #%$¢3)
(¢ Frae 1S sz-r)

il
s
A

NOP, EXG, ABX, SBC, TST, BIT

completed without reference to it being positive or
negative. Positive integers are assumed for this
multiplication. Although MUL takes 11 machine cycles (it is
the longest 6809 instruction), it saves the several steps
required by other processors, where multiplication is done
by many succeeding steps of shifting and adding.

Another you've already seen is no operation, mnemonic
NOP. The NOP has several uses, most frequently as a time-
waster for sound, input/output, communication, or other
timing loops. The NOP takes two cycles to execute, during
which no other aspect of the procesors’s operation is
affected.

Another instruction which you haven’t specifically used,
but is in a familiar family, is exchange, EXG. Like the
transfer (TFR) command, EXG uses an opcode and a
postbyte to describe the registers needed. TFR replicates
the value in the source register into the destinationregister.
EXG swaps the values in the two registers. EXG is useful
for organizing A and B registers properly in the 16-bit D
register; for placing information into the more flexible X
register; for temporarily swapping stacks; and so forth.

Since I just mentioned the X register as being more
flexible, I'll present the command ABX. ABX instructs the
processor to add the value of the B register to the X
register. This inherent instruction is very fast, and acts as a
kind of fixed increment for X. If X has to move through a
high resolution graphics screen hex $80 bytes at a time, for
example, it would be most efficient to set B to $80 and
execute ABX. Especially inside a loop, ABX would bump the
X pointer down to the next graphics screen line in a short
time.

Two complementary instructions are add with carry (ADC)
and subtract with borrow (SBC). These are standard add
and subtract commands, except that the carry/borrow flag
is made a part of the computation. I'll talk more about ADC
and SBC when I get to the representation of numbers in a
later lesson.

TST and BIT are related quick testing instructions. BIT
causes the processor to AND the value of an accumulator
with a memory location. Certain flags are affected, but the
original contents of both accumulator and memory remain
unchanged. BIT is particularly useful for locating numbers
or ASCII strings in memory, since the value in the
accumulator isn’t affected as it moves and tests byte after
byte.

TST is similar to BIT, but is oriented toward signed
numbers. TST tests the value of the operand — which can
be a memory location or either accumulator — and sets the
negative and zero flags according to what it finds. Signed
conditional branches (BGT, BLE, BGE, BLT, BEQ and
BNE) are usually placed after the TST.

* If the {Color Computerts
digital-to-analog converter were
8 bits instead of six, what
would be the step size (the
resolution)?

1/256th of the ocutput.

* ¥hat is the step size (the
resolution) of the Color
Computer’s digitai-to-analog
converter?

1/B65th of the output.

* What is the highest resolution
of this table of sine values for
the Color Computer's
digital-te-analog converter?

1/64th of the sine wave shape.

*# The following guestions refer

ta the remaining 66889
instructions introduced in
Lesson 19.

% What is the action of MAL?

The contents of the R
accumulator is muitiplied by the
contents of the R accumulator,
and the result is placed in the
D accumulator,

* Is the result of MUL signed or
unsigned?

Unsigned.

¥ If A containg $88 and R
contains $C2, what is the result
of MUL?

D contains %0618,

If B contains ¢35 and B
contains $AA, what is the result
of MIL?

D contains $3872.

*If A contains $FF and B
contains $FF, what is the result

of ML?

D contains $FE@L.

Learning the 6809 171

SEX, DAA

% What is the result after NOP?

No change to any vegisters or
wewory locations; no operation
fakes place.

#[f A contains P8 and B
contains $02, what is the resull
of EX6 A, B?

fi contains $C2 and B contains
$38.

% If X contains $FFEE and Y
contains %Q1C0, what is the
result of EXG X,Y?

¥ contains $Q1CD and Y contains
$FFEE.

*# If % containg $QICD and B
contains $33, what is fhe resuli
of ABR?

¥ contains $6200.

If X contains $FFFF and B
contains $@B, what is the result
of ABX?

¥ contains $0QQ7,

+ If A contains $18 and thne
carry flag is set, what is the
result of ADCR #3187

$10+8104L = 821

If B contains $@1, what is the
result of SEX?

D contains $0081.

¥ If B contains $FF, what is the
result of SEX?

D contains $FFFF,

If B contains $8@, what is the
result of SEX?

D contains %FFBAQ,

* A contains $43 and ADDA $99 is
executed, What is the resuylt
after DAA?

A contains $42 and the carry
flag is set.

172 Lesson 19

The next instruction also has to do with signed arithmetic.
Called sign extend (SEX), it results in the sign of the B
accumulator being extended into the A accumulator for a
complete, signed 16-bit number in the D register. In other
words, if B is a positive number, A will become $00. If B is
$77, for example, after SEX, the D register will be $0077.
On the other hand, if B is a negative number, A will become
$FF. That is, if B is $FC (-4 decimal in 8-bit signed
arithmetic), a negative number, its sign is extended so that
the resulting D register is $FFFC — still -4 decimal in 16-
bit arithmetic. If that isn’t clear, count backwards, firstin 8
bits and thenin 16 bits. Starting with $00, $FF is—~1, $FE is—
2, $FD is -3, $FC is —4. Now start with $0000, a 16-bit
number. $FFFFis—1, $FFFEis—2,$FFFDis-3,$FFFCis-4.
Sign extend, mnemonic SEX, sees to it that an 8-bit signed
value is properly transformed into a 16-bit signed value.

All that’s left is DAA, the decimal addition adjustment.
Microprocessors are working in binary, base 2, and that
operation is represented by hexidecimal, base 16. As
you've discovered, none of this fits very well with base 10,
the decimal system. Some processors contain a decimal
mode of operation, where adjustments are made
automatically after every computation to compensate for
the base 10 system. In other words, no number larger than
binary 1001 is allowed in a nybble.

Sadly, decimal mode is is one of the few desirable features
not found in the 6809 processor. In its place is the
instruction decimal addition adjust, or DAA. When
executed after and ADD or ADC, the values in the
accumulator are converted from true binary mode to a
decimal version called binary-coded-decimal, or BCD. The
nybbles of the byte are adiusted, and the carry flag set if
necessary, to turn the binary result into BCD.

For example, if I were to LDA #$77 and then ADDA #$77
(note both these are binary-coded-decimal numbers), the
binary result would be hex #$EE. Although I want these to
be decimal representations, the processor treats them as if
they were binary. If I follow those commands with DAA,
however, a series of tests and corrections are made. $54 is
left in the accumulator and the carry flag is set. That’s the
number 154 in BCD, the sum of 77 BCD plus 77 BCD.
Review the summary of DAA on page 43 of your
EDTASM++ manual; there will be more on this later.

By the way, it’s especially with an operation such as DAA
that the command ADC comes into play. The carry
generated by DAA in the previous example has to be taken
into consideration when doing arithmetic with larger
numbers, Keep that in mind, as I'll be covering that in
Representation of Numbers, the next lesson.

EXTen,

A= DoN'T CARE.
EI] B=$77 (681 H77)
O Sex

D=323877
(le-BIT $77)

5 oo e

B= SFC (8-Br-4)

D= $FFFC

! TES).
8]

A=$AS
BITA #3599

A [ToTedaT]
A

weme, [opldddd]
0
7\'\1 'é
A=PA3
BITA 4550
A
Ao [IEEEE
NP [dolofololeleld

Mol

pre

