P CLEAR 1

7%

_BATIC Drowan |

HIR

FACLTTON

exT Basic || ExT msic

COLOR_ BASIC COLOR BASIC

CARTRIDGE CARTE|DGE

NOT USED NOT USED
P CLEAR >

BASIC. | PRCRAM

il

EXT. BASIC EXT BASIC
crbc| | coon mc|
CARTRIDGE CARTRIDGE
NOT UsED MNOT USED

Welcome back. I hope you’ve had a little fun with the final
program in the last session. If you took the time to contrast
the listing of that program with the previous one, you may
have noticed a group of hexadecimal numbers and a series
of USR routines in place of the BASIC POKEs. Remember
that the synchronous address multiplexer — the SAM —
uses write-only registers that are located in the upper area
of memory. Fourteen of those addresses are used to set or
reset the individual binary digits of a 7-bit video display
address.

Turn back to the last program listing. PCLEAR4 in the first
line is intended to release memory for Extended BASIC’s
high-resolution graphics. What it actually does is move the
BASIC program itself in memory, freeing a large block
memory space between $0600 and the start of the BASIC
program. The way I've arranged the screens is first to print
them on the screen, meaning they appear in memory at
$0400 to $O5FF, the usual address of screen memory when
you turn the computer on. The info is printed on the screen
by seven subroutines, and then, byte by byte, POKEd into
memory at $0600, $0800, $0A00, etc., in blocks of 512
bytes.

The screens are then prepared. All that remains is to
redirect the video display by changing the video address in
the SAM. My earlier program POKEd the changes in place,
but the changes happen too siowly in BASIC. The results
are illegible, with unwanted screens flickering by between
POKEs. So I've set up some simple machine-language
subroutines, which you can see in raw form in lines 9
through 15.

I'd like you to read these. Turn to your MC6809E data
booklet, and open to pages 28 and 29. The first
hexadecimal byte in the program is $B7. Look through the
data booklet’s numerical listing, and you find that B7
corresponds to STA, or Store A Accumulator, in the
extended addressing mode. The extended addressing
mode, as you know, means that the two bytes following the
opcode form an address where the data is loaded from or

Learning the

Coming into this lesson with
concepts securely in your mind,
you'1ll be solving a problem by
structuring and programing a
useful piece of software,
Review comes first, then you'll
get right into it.

*# What does
statement do?

the BASIC POKE

It directly sanipulates wewory,

¥ What is the purpose of BASIC's
PCLEAR statewent?

To release nEWOrY for
high-resolution graphics.

*# What controls the video
display address?

SAM registers,

Where is the video screen
located in the norsal Color
Computer?

fit 8408,

+ Homw is the address

deterwined?

By writing to the SAM display
offset registers.

6809 s

BASIC and speed
% What is extended addressing?

fn addressing mode where the two
bytes following the opcode form
an address where the data can be
found.

* phat addressing wmode is
utilized by STR $FFC7?

Extended addressing.

* Rewember that it’s the act of
storing — not the information
stored — into the SAN registers
that determines the result,
With that in mind, what action
is taken by:

STR $FFC7

STA $FFC9

STR $FFCN

STR $FFEC

STA $FFCE

STR #FDO

STA $FFD2

The video display offset address
0080811 is selected,

What sewory address is this?
0608,

* The hex oprode for store A
accumlator extended is ¢H7.
What does $B7 06 8@ indicate?

Store A accumulator at mewory
atdress $8688 (STR $0608).

* What is the clock speed of the
Color Computer?

.89 Wiz (894,886 clock cycles or
pulses per second).

How long is one clock cycle?

1.11746 wicroseconds {millionths
of a second).

How many clock cycles does a
STA extended command take (the
information is in the data
booklet).

5 clock cycles,

90 Lesson 10

stored. The next two hex numbers in the program are $FF
and $C7. Your SAM data booklet will tell you that $FFC7 is
the address to set the least-significant bit of the video
display address.

Follow the remaining hex bytes in the listing. You'll see B7
FF C9, meaning Store A Accumulator at $FFC9; B7 FF CA,
Store A Accumulator at $FFCA; B7 FF CC, Store A
Accumulator at $FFCC; and 39. Check $39 in the numerical
instruction list on page 28 of the MC6809E data booklet.
It’s an opcode that will become very familiar — it is RTS,
Return from Subroutine.

So the first group of bytes in line 9 of the BASIC program
store the A Accumulator at $FFC7, $FFC9, $FFCA and
$FFCC. A check of the SAM registers will show that these
actions will place the binary value 0011 in bits 9,10, 11 and
12 of the video address. Bits 13, 14, and 15 (the most
signficant bits) are all zero, because that’s where they were
established when the computer was turned on. The full
result of this short subroutine, then is to create the video
address 0000 0110 0000 0000. I'll translate that for you.
It’s address $0600, the address of the first screen the
BASIC program POKEd into memory. By analyzing each
of lines 9 through 15, you will see that the video display
addresses created are $0600, $0800, $0A00, and so
forth.

These seven short machine-language subroutines, then,
are a quick version of the BASIC POKESs that were used to
redirect the screen in the previous program. The speed
here, however, is too fast to see. How fast is it? Glad I asked
that. Flip to page 31 in the MC6809E data booklet, and
look up the mnemonic STA. Under the heading
“Extended”, you'll find the opcode $B7. The next column
tells you that a Store A Accumulator Extended takes five
clock cycles. There are four Store A Accumulator
instructions in each video display switching subroutine,
meaning a total of 20 clock cycles. The RTS (Return from
Subroutine) takes 5 clock cycles. The whole subroutine
takes 25 clock cycles. At your Color Computer clock rate of
894,886 clock cycles per second, that means the
subroutine is finished with its work in .00002794 seconds
— 30 millionths of a second, about the time it takes the
electron beam to sweep halfway across the TV screen.

I want to close a knowledge gap now. Obviously I've been
talking about machine language subroutines in this BASIC
program. BASIC puts those subroutines into memory in a
very clumsy way. Look at the program listing. In lines 9
through 15 are a series of BASIC DATA statements in
which the hexadecimal numbers are treated as strings. In
line 16, have variable X select the memory area to be used;
in this case it’s 16293 to 16383, hexadecimal addresses
$3FAS to $3FFF.

The next step has the hexadecimal byte masquerading as a
two-character ASCII string read as variable A$. BASIC
identifies hexadecimal by the symbol “&H”, so “&H” is

LET A$= %"
LET 8=

SN AS
(o secomes L)
VAL(B8) s VAL (EHe3)

YAL (5%)=

198

concatenated with each two-character ASCII string. In this
way, BASIC can be tricked into taking the value of the
string, and that value can then be POKEd into memory. All
that happens in line 16. Seven machine-language
subroutine entry points are established in lines 17 through
23. Extended Color BASIC allows ten entry points
altogether named USRO through USR9; this program
defines USR1 through USR7 for the seven screens to be
displayed. Finally, lines 24 through 41 execute these
subroutines in a fancy series of FOR-NEXT loops, and
delay appropriately. By changing the order of the loops,

Video screens

+ How long is that?

3 times 1.11746, or 5.5873

microseconds.,

® How many S5TR extendeds is that
per second?

1000008 microseconds divided by
5.5873 per 5IR extended
instruction, or roughly 179,008

cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an [/0 error occurs,
rewind to the program’s start and try again. For severe loading
problems, see the Appendix.

3FRT aalaa ORrG $3FAS
3FAS R7 FFC7 @a112 SCRNL STA $FFC7
3FA8 R7 FFC3 aaize 87A $FFC9
3FAER B7 FFCA Qai3a 87A $FFCA
3FRE R7 FFCC Q014 8S7A $FFCC
3FR1 39 Qa15a RTS

3FRE R7 FFC& AQ16@ SCRNZ sSTA $FFC6
3FRS B7 FFCa " rd STR $FFC8
3FB8 E7 FFCR agiaa STA $FFCEB
3FEER RB7 FFCC aa19e 8TA $FFCC
3FBE 39 agzee RTS

3FEBF RB7 FFC7 dAE1@ SCRN3 8TA $FFC7
3FCz ER7 FFC8 aRzze 8STA $FFCA

m,},w you can make the seven messages flicker and flash in a per second.
fower P variety of ways.
\f:f :::: # BASIC can perform roughly 68
SRz | 5 BadA Here’s a recap: Seven 512-byte screens are created in the POKEs per second. How wmuch
USRS | FBHUA memory below the BASIC program, allocated by faster is the machine language
UU:':: ::::’: PCLEAR4. These screens are displayed by machine- equivalent of S5TA extended?
SR | B9, language subroutines that switch the video display .
UeR7 | 3444 registers in the SAM. I hope this hybrid BASIC / machine- 179,008 divided by 68, or about
3::3 :::: language program gives you some ideas for effective but 2,632 times faster.
simple program displays.
LerusRg= .) * What is the standard symbol
76295 As for the knowledge gap, the technique for creating short for hexadecimal?
ﬁ*‘a rre machine-language programs and POKEing them into
S (IEXBEETYS = memory via BASIC is something you can use often. Write The dollar sign (),
? :::: :Z‘;‘; the program, either byte-by-byte or using an editor/
XTI assembler. Take the hexadecimal opcodes and operands in * What is the BASIC symbol for
USR. § | $BU4A the order they will appear in memory, and put the values hexadecisal ?
i:? i:ﬁ: into a bunch of BASIC DATA statements. Read each
UL 8 | SPAdA value, convert it to a number BASIC can use, and POKE it The symbol ampsersand plus the
USE 7 | SBHYA into memory. By using the DEFUSR command, define letter B (2H).
where your program will begin execution. From that point
DEFUSR. 2= on, it only takes a USR command to execute your machine- # What comsand is used for a
16306 language program. Review the program you’ve just run BASIC machine language entry
USES | 551 4A until you understand how that’s done. point?
CIXREETN P
OSRZ : HFBRZ | 3 . .
A ee s whaqA N Before I leave this program, please load the mnemonic USR.
Use-t | $BH4A source code that follows.
Z’Z’Zi Zﬁﬁ_ﬁ_ % BASIC needs to know the
8::; ::::: Program #17, an EDTASM+ program. Insert the EDTASM + starting point of a .adm?
TR cartridge, and turn on the power to your computer. When the language program. How does it

get it?
With the DEFUSR command.

+ What
mean?

does DEFUSR3=RH3FBF

It weans that the entry point
{execution address) for USR
routine number 3 is at location
$3FBF.

Write a statement that informs
BASIC that machire language
progras #7 begins at $3FF3.

DEFUSR7=4H3FF 3.

Learning the 6809 91

Hand assembly

What is BASIC's representation
of hexadecimal?

fmpersand plus H {3H),

If variable C$ is A9, write a
statement to make C equal to the
hexadecimal value of C§.

€ = VAL("EH DY)

What is hand assesbly?
Figuring the hex (binary) code
byte by byte from the snemonic
{source) code.

«% Hand assemble STR $FFC7 into
hex, and then binary, code.

STA $FFC7 becowes $B7 FF C7,
which becowes 18118111 1111111}
11008111,

* What addressing sode is this?
Extended addressing.

* How many bits represent an
address?

16 bits.

* How many hexadecimal

characters is this?

4 hex characters.

How many bits represent the
memory contents at an address
{the data)?

8 bits.

How many hex characters is
this?

2 hex characters.

% bhat is the value BO2IOBIQ in
hexadecimal?

$i2

+ What are the ASCII values for
1 and ®2*?

$31 and $32.

92 Lesson 10

3FCS B7 FFCER aaz3@ 8TR $FFCE
3FC8 R7 FFCC _AZ4@ 87TA $FFCC
3FCER 39 razsa RTS
3FCC B7 FFC& 2az6@ SCRN4 57TA $FFCE
3FCF R7 FFC9 eaz7a STR $FFC3
3FD2 B7 FFCE agpzaa sTA $FFCH
3FDS R7 FFCC aRz3a STA $FFCC
3FD8 39 Qa3ea RTS
3FD9 ER7 FFC7 Q@312 SCRNS 85TA $FFC7
3FDC R7 FFC3 xa3ze STR $FFC3
3FDF B7 FFCE Qb330 STR $FFCR
3FEZ R7 FFCC DA340 STA $FFCC
SFES 39 Qa3Sa RTS
3FE6 B7 FFC6 @@36@ SCRNE 8STR $FFC6
3FE9 B7 FFCa @az7e STA $FFCa
3FEC B7 FFCA aa3sa STR $FFCA
3FEF B7 FFCD aazse sSTA $FFCD
3FF2 39 Q4R RTS
3FF3 B7 FFE7 @a41@ SCRN7 sSTA $FFC7
3FF& B7 FFC8 a4z STA $FFC8
3FF3 RB7 FFCA @a43@ STA $FFCR
3FFC R7 FFCD QA4 42 sSTA $FFCD
3FFF 39 QA4S RTS

Qeaa Qaa462 END
Q2@ TOTAL ERRORS
SCRN1 3FAS
SCRNZ 3FRZ
SCRN3 3FBF
SCRN4 3FCC
SCRNS 3FD3
SCRN6& 3FE6
SCRN7 3FF3

Type A/NO and hit <ENTER>. Lines of information
scroll by. The incredible thing about this mnemonic source
code — and most mnemonic source code — is that it looks
so massive. Here are 36 lines of typing, 7 labels, 8 columns
wide, practically filling a page. And yet all this resolves into
amere 91 bytes of actual program, little more than a third of
what a BASIC program line can hold.

Since I knew precisely what I wanted, and since this
program was so short and consistent, I actually figured out
the hex code byte by byte using the MC6803E data
booklet. Later I typed this source code for you. But in doing
the hand programming, I had to keep track of where each
subroutine began. The nice part about an editor/assembler
is that whatever you have in mind can be typed and
examined easily, even if it seems long. The editor/
assembler picks up typing errors, whereas hand
assembling each byte can be a highly error-prone
procedure. Plus, by liberally scattering labels in the code,
critical addresses can be identified; in fact, the assembler
provides a complete display of all labels at the end of the
assembled listing. Which teaches you more? My vote is for
hand assembly. I'll help you with some of that.

For hand assembly you’ll need paper and pencil, plus your
MC6809E data booklet open to pages 30 and 31. The
problem will turn away from flashy video displays for
awhile; here it is:

(iiven an address transferred from a BASIC program,
create a display which will present eight lines of
information. The first line will contain the address and
eight hexadecimal bytes of memory contents separated by
spaces. If the address is $2000, for example, the display

™

DEFUSR D=
— 162(F

USR ¥

SBHHA

SR |

HIFAS

UsSR2

b 2FBZ

SR 3

$ BFBF

1 Usk <

& BYYA

USR §”

$BUHA

USR.G

SB4HA

USR T

$BHHA

USR8

€ BH4A

USR.?

S BYYA

PEFUSR. =
e o532

e &

$844A

Useed

S AT

USSR Z

$3FpZ

LDSRD

B3FBF

LSRR

b3RL

27 n\ﬁ

Xz

OSRS

PBHGA

LSRG

BBAYA

USR7

BBHYA

USR8

BHYA

USRG

$8444

DEFUSR 5=
— /6345

VSR ¢

$B4HA

USR.|

B3rAS

UsrR 2

$3Fp2

| OsR3

$ SFEF

USRY

$SFCL

USRS

$3f09

N

SR6

$B44A

OsR7

$ BY4A

usks

B44A

OsRy

EBUAA

DEFUSR b=

358

use@

$BY4A

LSkt

$3FAS

USRZ

$2r82

USR3

5 LFOF

VSR

$IFCC

3 USRS

$3F07

USRbe

BIFEL

TR

WiReT

$ B4

USRS

$BY4A

USRY

58444

PEFUSR 7=
1637/
USRE | HRHYA
USRA | $3FAS
USe2 | &3z
SRS | $DERF

OsRY | $3FCC
L wes | 32¢be

R | $3FEL
USR7 | $3FF3
Uses | SBYA
(529 | $649A

Fot

$BH4A 77
EXEC. &R BYYHA

A /5 %
~ 7 FC ERROR %

7y uk\mp\“\'\f \I‘§
RV

should print $2000 followed by the data found in memory
locations $2000, $2001, $2002, etc., up to $2007. In the
next line, the address $2008 would be displayed, together
with the memory data found at $2008 through $200F. And
on down for a total of eight lines. Ready?

2000 ¥ FF 2¢ 13 42 65 AA AA Ol
2008 X% (2 93 4/ 40 87 Az BL B
2010 ¥ 95 00 OO 00 GO 00 0O 0O

!

AVDREZS & BYTES
CF DATA

Know how to tell if you're ready? Think about Session 8,
where I presented a dozen machine language instructions
and showed how they worked, including how flags were
affected. If that’s not clear and reasonably fresh in your
mind, review it now. When those instructions make sense to
you, you're ready to move on.

The problem at hand is to transfer an integer from BASIC
which represents an address in memory you'd like to
examine. That examination will display 8 lines, each line
containing one address and 8 consecutive bytes of memory
data. In all, 64 bytes of data will be displayed. First,
conceptualize the problem. Information in integer form is
to be transferred to the machine-language program. That
part is easy; the USR function is used, with the target
address being the operand in parentheses. You've already
used the integer-conversion routine from the BASIC ROM
in order to retrieve a value from BASIC for your machine-
language program’s use, so that’s easy.

Once you've got the integer value in your own program, two
things need to be done. First, it has to be treated as
displayable information. The address must be converted to
four ASCII characters for presentation as a hexadecimal
display. Second, the integer has to be treated as the
address itself in crder to retrieve the memory information
for display.

How about an integer-to-ASCII conversion routine, then?
You'll want to break it down intc simple modules, if
possible. Start by looking for modularity, small consistent
units that you can program. What you know you have are 16
binary digits which you want to represent on the screen as
four ASCII characters in hexadecimal notation. There’s a
clue there. 16 binary digits. Four ASCII characters. You
already know that a single hexadecimal number represents
four binary digits. The solution lies in that knowledge: treat
each four-bit group as an identical task. A single
subroutine.

integer to ASCII

* What is the value of 110@1i81
in hexadecimal?

$CD

What are the ASCII values for
lc‘ m lnl?

$43 and $44,

*# What is the value 10891110 in
hexadecimal?

$8E

What are the ASCII values for
*8" and "E"?

$38 and $45.

* fin address is $ABD7. What are
the four ASCII values (R, 8, D
and 7)?

$41, 430, $44 and ¢37.

* What is the ASCII value for a
space?

$28,

To display the address $ARD7,
a space, and the contents of
$ABD7 (which is $B8E), what ASCI]
values must be used?

$41 30 44 37 28 3B 45

+ Where are these ASCI] values
placed?

In display mewory.

¥ Where is display mewory on the
norwmal Color Computer?

From $3400 to $OSFF,

*+ How many bytes is the value
$8E?

One byte, BE.
* How many bytes are the ASCII
values needed to represent the

value $BE?

Two bytes, $38 and $43,

Learning the 6809 93

Entry and exit

* How many bytes is the address
$ARD7?

Two bytes, $78 and $D7.

% How many bytes ave the ASCII
values needed to represent the
value $A8D7?

Four bytes, $41, ¢38, $44 and
$37.

What are the ABCI] values for
the characters "8° through *9"?

$38 through $39.

* What are the ASCII values for
the characters "A" through *F*?

$41 through $46.

¥hat is the numsber $8E in
binary?

$8E in binary is 1008 i110.

In the nusber $8E, which bits
represent the nusber 87

The leftmwost four bits.

In the nusber $BE, which bits
represent the nusber E7?

The righteost four bits.

fhat are the lefimost and
rightmost four bits of $8E?

1008 and 1118

Wnat are the binary values for
8 and E?

0002 1008 and 0000 1110,

¥ What are the birary values for
ASCIT "8" and ABCII “E"?

9811 1008 and 2108 dig1.

% What is the difference between
binary 8 and ASCII *8"?

Binary 8 is G008 1888 and ASCII

"8" is 9811 10083 the difference
is 0811 0088, or $38.

94 Lesson 10

That line of thinking brings you one step closer to a
modular approach. Each time you have four bits in hand,
you can call the subroutine that creates an ASCII character
from them. Now you need only sketch out that subroutine.
Recall a few sessions ago how, in order to access a table of
encrypted codes, a constant value had to be subtracted
from the ASCII characters to obtain numbers starting from
zero. In this case, you have a complementary situation. You
have four binary digits equivalent to the hexadecimal
numbers O through F. In order to produce ASCII
characters, then, it’s necessary to add a constant value. To
display the number zero as the character 0 with the ASCII
value of hex $30, you would add hex $30. To display the
number one as the character 1 with the ASCII value $31,
again you would add $30. You would do that right up
through number nine which is displayed as the character 9,
ASCII value $39. The constant you add is $30.

So far so good. But when you get to number A, you're in a
little trouble. Binary 1010 is number A, Character A is
ASCII value hex $41. The constant you must add to
number A to get character A is hex $37. It’s consistent from
A through F — add $37 to the value and you get the ASCII
character.

How do you reconcile the two different constants? The
answer is simple: you dorn’t. You find out whether the value
is O through 9 or A through F, and add the constant $30 or
$37 accordingly.

That looks like enough information for a subroutine. The
“entry condition”, as it’s called, is a group of four binary
digits. That four-bit number is checked to see whether it is
greater or less than 9. If it’s greater than 9, you add the
constant $37; if it’s 9 or less, you add the constant $30. The
result is an ASCH character which, when displayed,
represents the hexadecimal numerical value. The ASCII
character is the subroutine’s “exit condition”. The nice
part about a subroutine like this is its versatility — not only
can it be used to display the digits of an address, it’s just as
good for displaying the bytes of memory data.

Mnemonically speaking, that would operate like this. The
A Accumulator enters with the four-bit number. It's
compared immediate with $0A. If the number is greater
than nine, the carry/borrow flag would not be set. The
program would Branch on Carry Clear to an instruction to
add $37 and then return from subroutine; otherwise it
would add $30 and return from subroutine. The A
Accumulator enters with the number and exits with the
ASCII character. Pretty slick.

It would look like this, assuming the A Accumulator holds

the four-bit number:
CONVRT CMPA #30A

BCC LETTER
ADDA #$3p
RTS

LETTER ADDA #4337
RTS

z) 2
[7Iel Iel/ 717 18lal 7 7 [7 Jolol7 oij
2

A B 7

106

CMP #$gA
(po-pa<op)
(set carry)
~BCoETRA—

ADDA #$30
$Ppetsad=$3¢

ASCil

P HSPA
(Be-pazed)
(clear carry)

$3C=
oCtii|o0n

ANP 000011t

0000160
“$gc

Now there’s the task of breaking the 16-bit address into
four 4-bit groups. Half of that's done already, since the 16-
bit address is split into two 8-bit bytes. Creating this
subroutine from there demands just a little convoluted
thinking.

You have 8 bits. You only want to use four bits at a time, and
these four bits have to be in the least-significant positions.
In other words; if the number is $3C, you want to convert
the four bits 0011 into a 3, and the four bits 1100 into a C.
The least-signficant four bits of the byte are just about
ready to use. All that remainsis to temporarily get rid of the
most-significant four bits. The term is “mask” the bits,
meaning create a mask so that only the bits you need show
through.

The mask here is AND. Recall how the AND instruction
works. Both conditions must be a one for the result to be a
one. To mask out the four leftmost bits of the byte, then,
you would AND each of those four bits with zero. To mask
IN the four rightmost bits you would AND each of those
four bits to one. I'll repeat that a different way. If the
leftmost four bits are ANDed with zero, no matter what
those bits are, the result of the ANDing will be zero. If the
rightmost four bits and ANDed with one, no matter what
those bits are, they will effectively remain the same.

Scratch it out on paper and look at it. Use the example $3C
that I just mentioned. Write down the binary equivalent:
0011 1100. Underneath it, write down the mask: 0000
1111. Now use the AND function:

6 AND @ is §
B AND § is B
1 AND § is P
1 AND @ is B

That’s the leftmost four bits. Now the rightmost:

lis 1
1is1
1is @
#AND 1 is @

There are the rightmost four bits. The mask to use here is
$OF. To recap: to retrieve the least-signficant four bits of a
byte, use the mask $OF.

You can pause here to review that section if you like.

The next task is to retrieve the leftmost four bits. If logic
holds, then you can again use a mask. Since the bits you
want are to the left, then the mask 1111 0000 should
suffice. That’s $F0; it will result in the four leftmost bits
being masked in, and the four rightmost bits being masked
out.

There’s a problem, though. Although it masks in the bits
you want, they’re not in the correct place. Youneed themon
the right side of the byte to represent the 4-bit numbers $0
through $F. You have to get those bits from left to right.

Masking

What is the difference between
binary E and ASCII “E*?

Binary E is 0008 1118 and ASCII
*E" is 108 8181 the difference
is 0100 0003, or $37.

#What is the constant
difference between binary values
@ through 9 and ASCII values "@"
through *9*?

The constant difference is $38.

* What is the constant
difference between binary values
A through F and ASCII values "R"
through *F®?

The constant difference is $37.

* What logical function states:
both of two conditions wust be
true for the result to be true?

The AND function.

% How are the rightmost four
bits retrieved from the mumber
$8E (1089 111€)?

By masking the leftmost four
hits.

What mask is used?
AND 00BB1111.

#If A contains BE, what
memonic command is used to
retrieve the rightmost four
bits?

ANDA & (AN A accusulator
ismediate with &, Dbinery
Smiiin.,

+ fhat constant is added to $6E

to produce the ASCI] character
IEI?

‘37.

Learning the 6809 95

Logical Shift

+ How are the leftmost four bits
retrieved from the number $8E
(1008 1118)7

By shifting the bits right four
times,

#phen $8E is shifted right
once, what is the result (in hex
and binary)?

8108 8111 (%47),

* When $BE is shifted ripght
twice, three times, and four
times, what are the results (in
hex and binary)?

Qdig M1l ($23), OGR! oBRl ($1D)
and 0000 1908 (488},

What comstant is added to $88

to produce the ASCII character
a?

£30.

+ What is necessary to convert
the least significant half of a
byte to a 4-bit number?

Masking with $@F.

- # What is necessary to convert
the wost significant half of a
byte to a 4-bit number?

Rotating right four times.

+ What is necessary to convert a
4-bit binary nusber to a
hexaderisal ASCII character?

The addition of a constant.

96 Lesson 10

Recall the various rotate and shift commands from an
earlier session. You'll need to refer to your MC6809E data
sheet to choose the particular rotate or shift you want; open
to pages 30 and 31.

You know that you need to move these bits to the right.
Your choices are ASR (arithmetic shift right), LSR (logical
shift right), and ROR (rotate right). Look at each one. ASR
reproduces the leftmost bit each time you shift, so this
doesn’t look very good. If you shifted first and masked
second, it would work. How about LSR? It shifts right and
brings zeros in from the left as it shifts. That one looks
good. Finally, ROR swings the bits 'round from the other
side of the byte, so you would need to mask the results
afterward.

The logical shift right (LSR) looks the best. In fact, it looks
excellent. Since the bits shifted out the right side end up in
the bit bucket, and zeros come in from the left, you don’t
even have to bother masking this before you use it. The
process of shifting it right gives you not only the four bits
you need, but eliminates those you don’t want.

Here’s a summary of these two program segments: the byte
is to be displayed as two hexadecimal ASCII characters.
The leftmost four bits are obtained by logically shifting the
byte right four times. The rightmost four bits are obtained
by masking the original hyte with $0F. All that remainsis to
make sure the original value is saved before modifying it.
Push A Accumulator will take care of saving the byte, and
Pull A Accumulator will get it back when it’s needed. In
terms of mnemonics, and assuming the value to be
displayed is in the A Accumulator, the complete routine
would look like this:

BYTBIT PSHS A Push A Accumulator onto stack

LSRA Logical Shift Right A Accumulator
LSRA Logical Shitt Right A Accumulator
L.SRA Logical Shitt Right A Accumulator
LSRA Logical Shift Right A Accumulator

JSR CONVRT Jump to ASCII conversion subroutine
JSR DISPLY Jump to screen display subroutine
PULS A Pull A Accumulator from stack

ANDA H30F AND A Accumulator immediate with $@F
JSR CONVRT Jump to ASCII conversion subroutine
JSR DISPLY Jump to screen display subroutine

At this point, two major portions of the problem have been
solved: the 8-bit byte has been converted to two 4-bit
numbers, and those 4-bit numbers have been converted to
ASCII characters. The screen display routine has yet to be
done. I'll leave you with these considerations: your program
has to know where to start the screen display in memory,
that is, it has to be initialized. The current screen display
position has to be updated so that the next character
displayed will appear in the next available position.

Review this lesson, and consider those problems for next
time.

$3c=[olofs[s]/]7]0]0]
S BOENARAE
LSR
e

‘M./y/
LSRDP;!”:LO]OI o /]/]s

O <R BH <R

et
wpﬁ}!ﬁo{o[o}o]/[/l/]

Epda

~

]

g
LSRB%‘;! o[o[o dfol /]

&<

Qo0 OO0/ =

END

The topicis hand assembly. Last time I started you working
on a program to display memory locations and their
contents. At the end of the session, you had produced two
pieces of that program: the byte-to-nybble conversion
routine (a nybble is four bits), and the hexadecimal-to-
ASCII conversion routine. The byte-to-nybble conversion
was made up of two steps. To move the most-significant
nybble into the righthand portion of the byte, the byte was
logically shifted right four times. To obtain the least-
significant nybble, amask of $0F was ANDed with the value
of the byte.

The problem I posed at the end of the session was this one:
create a single-character display subroutine that, when
called, places a character in the correct location on the
screen and updates the program to point to the next
available screen location.

To help solve this, I hope you thought back to the message-
display program you created in the third session. There
wasn’t much to that display routine, and there isn’t muchto
this one either. At the beginning of this program, then, you
would initialize the first screen location, perhaps in the Y
register. Each Color Computer screen line is 32 characters
long — that’s hex $20. So to start on the fourth line of the
screen, you would load the Y register with the immediate
value of $0480 at the start of the program:

LDY #3p48p

is the mnemonic. If the ASCII value to be displayed is the A
Accumulator, and the Y register points to the current
location on the screen, then you would store the- A
Accumulator in memory — display memory, that is —
indexed by Y. To update that location, choose the auto-
increment/decrement zero-offset indexed mode. You
remember that mouthful. That’s Store A Accumulator at
memory indexed simply by Y, auto-increment Y by one,
and then return from subroutine. Label it DISPLY:

DISPLY STA Y+

assembly really hasn't
soten underway yet. At this
pointy the program is still
being structured and converted
into mmemonic source code. So
fary a complete byte-to-ASCII
conversion systes has been
developed., What's to come is a
display routine, plus a kind of
executive structure.

*# What is the location of the
normal disolay screen on the
Color Cosputer?

30408 to $O5FF,

* Each line of the display is 32
characters lona. What lire
starts at 7

If 8488 is the start of the
first line, then $8488 is the
start of the fifth line.

* If the ¥ register points to
screen location $OAB8 and the A
register contains the ASCII
value, what snemonic instruction
would place the ASCI! value on
the screen?

STR .Y

+ What memonic instruction
would place the ASCI1 value on
the screem, and autosatically
move the ¥ pointer register to
the next screen position?

STA WY+

* Write two instructions that,
given the conditions just used,
create a complete ASCII display
and screen update routine.

STA ,v+
RTS

RTS
Learning the 6809 97

A mnemonic program

* What does STA Y+ mean?

Store A accumulator to memory
indexed by the Y register, with
no offset, and automatically
incresent V.

+ Biven that R contains $20 and
B contains 628, what do the
following four instructions do?
STE v+
STR Y+
578 'Y+
STB .Y+

The four insiructions display
spacey stary stary space.

% What does JSR $B3ED identify
on the Color Computer?

fn integer conversion subroutine
in the BASIC ROM.

What are the results of J5R
$B3ED?

A 16-bit signed integer is found
in the D register,

*+ What does integer msean?

A number without a fractional
{or decisal) part; a whole
nusber.

+ What integer"

mean?

It wmeans the nusber is positive
or negative.

How is the sign indicated?

By the leftmost bit; 8 is
positive, 1 is negative.

does “signed

In the display programs how is
the sign information used?

it isn't. The number is treated
as a3 16-bit unsigned integer.

#In the Program, the
instruction STA (50881 appears.
What addressing mode is this?
Direct addressing.

#In the PrograN the
instruction LDA #%2R appears.
What addressing mode is this?
Immediate addressing.

+In the Progray the
instruction JSR $B3ED appears.
What addressing sode is this?
Extended addressing.

#In the PrrOgra, the
instraction BNE LLODP appears.
What does BNE LLODP mean?

1t means Branch Not Equal to the

instruction labeled in the
source listing "LLDOP".
98 Lesson 11

That should do the trick. A short, sweet 3-byte subroutine
that illustrates the power of the 6809 processor.

That seems to cover the necessary subroutines —
conversion and display. What's left to create is a kind of
executive program which accepts the address from BASIC,
searches for the memory data, and calls the subroutines
you’ve just created. This executive’s job would be to call for
the value from BASIC, initialize the screen parameters, do
the screen line and screen character counting, call the
convert and display subroutines, and return to BASIC
when all is done.

The sequence as I see it comes out to 15 steps:

1.
2.
3.

Get the target address from BASIC
Initialize the screen starting position
Initialize the line and character counts — 8

lines, memory bytes per line

4.

Convert and display the most-significant

byte of the memory address

5.

Convert and display the least-significant

byte of the memory address

6.
7.

8.
9.

10.
11.
12.
13.

Display a space as a separator
Display two stars or other separators
Display another space as another separator
Get the memory contents of the address
Convert and display that memory byte
Display another space as a divider
Increment the target address
Loop for 7 more memory bytes, for a total

of 8

14.

Loop for 7 more lines of address, for a

total of 8

15

. And finally, return to BASIC

I've prepared a program that follows these steps; open to
your documentation and follow along. The program is in
mnemonics, which you will be hand-assembling. I'll explain
each line briefly; those which you haven’t already written
should fall into place.

LLOOP

JSR $B3ED BASIC INTEGER-CONVERT ROUTINE
LDY #3p480 FIRST SCREEN LOCATION TO USE
TFR DX GIVE INT-CONV RESULT TO X REG
LDA #8 PUT 8 LINES INTO ACCUMULATOR
STA <pppl LINE COUNT INTO DIR. PAGE Bl
LDA #8 PUT 8 BYTES INTO ACCUMULATOR
STA <pogs BYTE COUNT INTO DIR. PAGE fp
TFR X.D INT-CONV RESULT BACK TO D REG
JSR BYTBIT BYTE-TQ-ASCII CONV. & DISPLAY
TFR B,A MOST SIGN. BYTE INTO A ACCUM.
JSR BYTBIT BYTE-TO-ASCII CONV. & DISPLAY
LDA #$2A PUT ASCII FOR "*" INTO A ACC.
LbB #$20 ASCII FOR SPACE INTO B ACCUM.
STB Y+ DISPLAY SPACE, GET NEXT POSN.
STA Y DISPLAY STAR, GET NEXT POSN.
STA Y DISPLAY STAR, GET NEXT POSN.
STB Y+ DISPLAY SPACE, GET NEXT POSN.

BYTE- To-NYBBLE.

ROUTINE(BYTSIT)

BLOOP LDA K+ GET MEMORY CONTENTS X- INDEXED
JSR BYTBIT BYTE-TO-ASCII CONV. & DISPLAY
ST8 Y+ DISPLAY SPACE, GET NEXT POSN.
DEC <popl DECREMENT NUMBER OF BYTES
BNE BLOOP REPEAT UNTIL ALL 8 DISPLAYED
DEC <ppap DEC. NUMBER OF DISPLAY LINES
BNE LLOOP REPEAT UNTIL ALL 8 DISPLAYED
RTS BACK TO BASIC WHEN ALL DONE .

SAVE BYTE STORED IN A ACCUM.

LSRA SHIFT TO RIGHT ONE BIT

LSRA ... AND SHIFT ONE MORE
LSRA ... AND SHIFT ONE MORE
LSRA ... TIL 4 BITS ARE AT RIGHT
JSR CONVRT NYBBLE-TO-ASCII CONVERSION
JSR DISPLY DISPLAY ASCII CHAR. & UPDATE
PULS A RECOVER ORIGINAL BYTE STORED

ANDA #3pF MASK IN RIGHT-HAND NYBBLE
JSR CONVRT NYBBLE-T0-ASCII CONVERSION
JSR DISPLY DISPLAY ASCII CHAR. & UPDATE
RTS TWO CHARS. CONV'D & DIPLAYED

CONVRT CMPA #3PA COMPARE NYBBLE AGAINST $pA

BCC LETTER IF CARRY CLEAR, A ACC. >= $@A
ADDA #83p ELSE IS A NUMBER, SO ADD $39
RTS CONVERSION COMPLETE; RETURN

LETTER ADDA #8$37 IT IS A LETTER, SO ADD $37
RTS CONVERSION COMPLETE; RETURN

DISPLAY ASCII, UPDATE SCREEN
RTS DIPLAYED & UPDATED; RETURN

Now comes the time-consuming part. I want you to
translate each one of these mnemonics into the binary
opcodes and operands the computer will need to execute
the program. I'm confident this program works — there are
some anomalies, but you'll discover them soon enough —
so open your MC6809E data booklet to pages 30 through
33.

Assume that the program will be stored in memory
beginning at $3F00. Since some of you have 16K machines
whose uppermost RAM address is $3FFF, this gives you
256 bytes of room for the program. I can tell you now that
this program will occupy less than 100 bytes, and with some
experience you'll be able to scope out program lengths like
this one. One other assumption to make is the address of
the Direct Page, which is $00; that information is provided
inyour EDTASM+ manual, in the memory map appendix,
which also informs you that direct page addresses $00
through $7F are free for your use.

For the hand assembly, you'll need several sheets of lined
notebook paper, with the addresses $3F00 through $3F60
in a column down the left side. This is a good time to take a
break for a review, and also to get the paper ready.

Translating mnemonics
What addressing mode is BNE
LL00P?

Relative addressing.

+1In the Programy the
instruction 5TB .Y+ appears.
What addressing mode is this?

Indexed addressing
{specifically, zero-of feet
indexed).

* In the Program, the

instruction LSRA appears. What
addressing mode is this?

Inherent addressing.

* What is hand asseshly?
Figuring the hex (birary) code
byte by byte from the smemonic
{source) code.

* The following inherent
instrections appear in the
progran. Hand assewble each:

Hand assemble LSRA.

$44

Hand assesble RTS.

$39

* The following immediate
instructions appear in the
progras. Hand assemble each
one:

* Hand assemble LDY #$8488.

$1@ 8E & 80

Hand assesble LDA #5088,

$86 88

+ Hand assemble LDB #$20,

$C6 28

* Hand assemble ANDR #$6F,

$84 OF

+ Hand assemble ADDA #%530.

488 38

*# The direct instruction 57TR
{60831 appears in the program.
Hand assemble it.

$97 &1

* The following register
instructions appear in the
progras, Hand assemble each
one:

+ Hand assesble TFR DyX.

$iF @1

Learning the 6809 99

JSR, LDY, TFR, LDA, STA

Hand assemble TFR ByA.

$iF 98

Hand assemble PSHS A.

$34 82

Hand assesble PULS A.

X<

& The following indexed
instructions appear in the
progras, Hand assemble each
one:

+ Hand assemble STB Y+

$E7 M@

+ Hand ascemble STR , ¥+

$A7 AR

+ Hand assemble LDA X+

$A6 88

¥ The following immediate
instructions do not appear in
the program. Hand assemble each
ml

+ Hard assemble RDDD #$C303

$C3 L3 €3

Hand assemble ANDCC #$AF
$1C F

* Hand assemble CMPX #$@5FF
$8C @5 FF

* Hand assesble CMPR $4FF
$81 FF

Hand ascemble EDRA #%20
$88 20

Hand assewble LDD $$BBAA
$CC BB AR

Hand assemble ORB #$AC
$CA AC

% Hand assemble SUBR #$82

$58 @2

+ The following extended
instructions do not appear in
the program. Hand assesble each
one.

+ Hand assewble ADDA $1683

$BB 1@ 08

100 Lesson 11

You should have your notebook paper ready, and your
MC6809E data booklet open to page 30.

Start with the first instruction, JSR $B3ED. Find JSR on
page 30. This is an extended addressing mode; the opcode
you should find is $BD. On your paper, next to address
$3F00, write $BD. At address $3F01, write the first byte of
the operand, which is $B3. At address $3F02, write the
second byte, $ED. You have hand-assembled the first
instruction, JSR $B3ED, into three binary bytes,
$BD B3 ED.

Your pencil should be poised above address $3F03, ready
to assemble the instruction LDY immediate #$0480. Find
mnemonic LD on page 30, and follow in the second column
until you find LDY. This is one of a limited number of two-
byte opcodes, and its hex representation is $10 8E. The
6809 is a newcomer, based on the 6800 microprocessor.
Opcodes like LDY are additions to the original 6800
instructions; where there’s no room to fit an opcode in the
binary instruction set, certain bytes are set aside as
doorways into further instructions. The hex codes $10 and
$11 serve that purpose; later on, check page 29 for a list of
these.

Back to the program. The opcode for LDY, then, is $10 8E.
So across from address $3F03, write $10, and across from
address $3F04, write $8E. Since this is an immediate
instruction, the next two bytes are the operand. Next to
addresses $3F05 and $3F08, write the bytes $04 and $80,
respectively. You have now assembled the second program
command.

Those two were easy. The next instruction is TFR D,X
(transfer D to X), which you can find on page 31. You'll find
this in the immediate column, although that’s stretching
the point. The opcode is $1F, so write that next to address
$3F07. The operand is D,X. Turn to page 34, where you’ll
find a block labeled “Transfer/Exchange Post Byte”. This
byte is divided into two four-bit blocks, that is, into two
nybbles. The left-hand nybble is the source register, and
the right-hand nybble is the destination register. The
binary information below names the registers. Your
program is transferring D to X. The source registeris D, the
destination register is X. Checking the table, you find that
D is value 0000 and X is value 0001. The combined byte is
therefore 0000 0001, or hex $01. Across from memory
location $3F08, write $01. The opcode and operand for
TFR D,X assemble to $1F 01.

Next. LDA immediate with 8. Back on page 30, under the
LD instruction, you can find LDA. Since this is an
immediate instruction, the opcode is $86. Next to address
$3F09, write $86. The instruction is immediate, so the data
is 8. Write $08 across from address $3F0A. Things are
moving now.

The instruction is STA Direct Page <0001. STA is found
on page 31 under the instruction ST. This is a direct

MPRESS DATA
3Foz _EDJ" %‘;}

Sree e S
seol B> (
| 2eoz ED >

SFO3 1O -

3FCH BE LioY 2
FOS O4 J#HOHED i

[sFae 807 o
=
LS
R Y
ADDRESS DATA <2
LFCO BD R)
3FC | 8%
BEeZ Ep
EET:)
3F04 BE
3FOS o% B

BFQ | B3
" sf0z " ER
3F0 > 10
_3fo4# _BE
3FO5 o4
3FOL 8o
|_2€07 1F
2FCH ol

(\/\/VV—‘————-._.

| 2F09 g6 S
2FCA B8

[3Fc® 97 1 s
3FocC CYMISLC S

addressing mode, so the operand under the direct heading
is $97. Write $97 across from address $3FOB. In a direct
instruction, the page is known, so only the least-significant
byte is used as the operand. The address is $0001 on page
$00, so the least-significant byte is $01. That’s the
operand; write $01 next to address $3FOC.

The next two instructions are virtually identical. LDA
immediate 8 is again $86 08. Write $86 next to $3FOD, and
$08 next to $3FOE. STA Direct Page <0000 is also very
similar, assembling to $97 00. Write $97 next to $3FOF,
and write $00 next to $3F10. The only thing to keep in mind
is the label LLOOP, an abbreviation for Line Loop. Your
program needs to come back to that address $3F0D each
time it has to display a new line, so mark that label down on
the bottom of the last page of your papers: write LLOOP,
and across from it write the address $3F0D.

You're only 16 bytes into the program. I've already told you
it will run nearly 100 bytes, so you’re probably beginning to
conclude that this assembly language stuff isn’t for you.
Hang on! The editor/assembler will do this all for you in
seconds, but I'm convinced it won’t do you any good to
assemble everything by machine. There are two
advantages to hand assembly: first, by the time you've hand
assembled a program, you know it intimately. Second, if
you're ever in a bind and need a quick diagnostic program,
POKEing values into place may be the only solution. You
have to be able to assemble a program from the data
bocklet, or you're wasting your time learning about this
powerful 6809 processor.

Back to work. Transfer X to D — TFR X,D. The opcode
you've used. Next to address $3F11 write $1F, the transfer
opcode. This time the source register is X and the
destination register is D. If you’'ve forgotten, turn to page
34. X register is binary 0001, D register is binary 0000. The
composite byte made from these two nybbles is 0001 0000,
or hexadecimal $10. That’s the operand. Next to address
$3F12, write $10.

The next instruction is JSR BYTBIT. You've used the
opcode for Jump to Subroutine (JSR) — that’s $BD. Write
$BD next to address $3F13. But how do you deal with the
operand? You know it’s an extended operand, which means
it's two bytes. The subroutine BYTBIT is within the
program you're writing, but you don’t know its address yet.
What you do now is leave two blank spaces at addresses
$3F14 and $3F15. You'll fill them in later when you know
what they are. There are two pass-throughs to any
assembly process, and this is the first pass.

The next free address is $3F16. The command is transfer,
$1F. Write that next to $3F16. The transfer is from B to A.
Again, turn to page 34. The source register is B, binary
nybble 1001; the destination register is A, binary nybble
1000. The combined byte is 1001 1000, or hex $98. Next to
address $3F17, write $98.

Direct page

% Hand assemble CMPB $FFFF
$F1 FF FF

* Hand assemble EORB $0881
$F8 08 @1

* Hand assesble JMP $B3ED
$7E B3 ED

+ Hand assemble LDX $7FFF
$BE 7F FF

* Hand assesble LDY $7FFF
410 BE 7F FF

* Hand assemble LSR $@10@
$74 01 8

% Hand assewble STD $8DDC
$FD @D DC

& The following inherent

instructions do not appear in
the program. Hand assemble each
one,

Hand assemble ASRA

$47

Hand assesble CLRB

$5F

Hand ascesble COMA

$43

Hand assemble INCB

$5C

% Hand assesble LSLB

5]

* Hand assesble NEGA

$40

* Hand assewble RORA

$46

Hand assemble RTS

$39

& The following register
the mrosmen. Hand ssseabie sath
one,

* Hand assesble PULS M CC, X, Y
$33 35

Learning the 6809 101

STB, Postbytes

+ Hand assesble PSHS
£y By Xy Yo CCy Uy DP, PC
$36 FF

+ Hand assesble TFR DPyB

+#iF B9

* The following indexed
instructions do not appear in
the program. Hand assemble each
one,

+ Hand assesble CWPR .Y

$R1 P4

Hand assemble CMPR Y+

$01 P8

* Hand assemble CMPA 5,V

$A1 25

Hand assemble CWPR $7F,Y

$A1 A8 TF

+ Hand assewble CHPA $1234,Y

01 A9 12 34

What does CMPR , Y+ mean?
Compare A accumulator to mewory
indexed by the Y register, with
no offset, and automatically
incresent Y,

+ What is hand assesbly?
Figuring the hex {(binary) code

byte by byte from the mnemonic
{source) code.

102 Lesson 11

Another JSR to BYTBIT is next. Write the opcode for JSR,
hex $BD, next to address $3F18, and leave blank spaces at
$3F19 and $3F1A. Again, when you find out where the
subroutine BYTBIT is, you'll fill those in.

A LDA immediate is next. That instruction’s been used
before; the opcode is $86, the operand here is animmediate
value, $2A. Write $86 and 2A next to addresses $3F1B and
$3F1C, respectively.

LDB is a similar opcode to LDA. You'll find it right below;
LDB immediate is $C6. Write $C6 next to address $3F1D,
and write its immediate operand, $20, next to address
$3F1E.

On to STB ,Y+. Find the ST instructioon on page 31, and
locate STB in the indexed addressing mode. The opcode is
$E7. Next to address $3F1F, write $E7. In the column
labeled “number of bytes”, it says “2-+”, meaning this
instruction requires a total of 2 or more bytes to complete.
You have to determine how many and what they mean.
Hand-assembling indexed addressing is the *~ickiest, but
zero-offset indexed isn’t bad. That’s what you have here.

Turn to page 33. Find the table entitled “Indexed
Addressing Postbyte Register Bit Assignments”. This one
byte contains a bucketful of information. It identifies the
register, what kind of addressing mode is used with that
register, and whether the addressing is non-indirect or
indirect. I haven’t talked about indirect addressing, so
don’t worry about that yet. In the right-hand column of this
table is a description of each addressing mode; “EA”
means effective address, that is, the address the
instruction will calculate and use. The mode used in this
instruction is auto-increment, zero-offset. That's the
second mode down. The definition of “RR” is shown below
the table. Your instruction uses the Y register, so RR is 01.
Plug 01 into the binary digits shown, and the resulting
number is 10100000. The postbyte for the Y register in
zero-offset indexed, auto-increment mode is hex $AO.
There’s your operand. Next to address $3F20, write $A0.

Between now and the next session, use your MC6809E
data booklet to complete the rest of the program. If the
process is still unclear, review the session up to this point.
Don’t cheat on me, now. When you can do this hand
assembly without your hand held by me, then you're ready
to go on. Talk to you then.

