The architecture of the 6809 processor has up to this point
been described piecemeal. Now I'd like to summarize the
6809 processor’s architecture, making the description a bit
more formal. Please look once again at Figure 4 onpage 5 of
the MC6809E data booklet.

The PROGRAM COUNTER keeps the machine language
program running in order. The Program Counter register
contains the 16-bit address of the next instruction to be
performed in the program sequence. The Program Counter
can be changed directly by the programmer, by jumps and
branches within the program, by subroutines, and by stack
operations. The Program Counter is one of the POINTER
registers.

The two ACCUMULATORS perform simple arithmetic.
The A and B Accumulators are each one byte (8 bits) in
size. For some operations, the two Accumulators are
concatenated, creating a single, 16-bit Accumulator. When
A and B are used together as one 16-bit Accumulator, they
are collectively called the D Accumulator.

There are two INDEX registers, each 16 bits in size, which
can be used to identify memory locations. Although by
themselves they are very limited in capability, the Index
Registers X and Y can be used, together with various
calculated offsets, to load or store data anywhere in
memory. To increase their flexibility, the X and Y registers
can also be automatically incremented or decremented
during the course of a machine language instruction. The
Index Registers are also POINTER registers.

There are also two STACK POINTER registers, each 16
bits in size, and each with a different purpose. The User
Stack Pointer, the U register, is only controlled by the
programmer by pushing and pulling information. This
program control allows information to be transferred easily
between portions of a program. The Hardware Stack
Pointer, the S register, is also used for pushing and pulling
information, but is used automatically by the processor to
save Program Counter address information during
subroutine calls,

After two lessons of heavy
abstract learning, you're back
with some familiar convepts and
practice. At the end of this
lesson, you'll be a third of the
way through the course — ready
to jump into the programming
details of the computer. So
give this lesson lots of time,
and practice each instruction
until it's comfortable ...
whether or not you know what

it's good for!

* Name the 16-bit registers of
the 6889,

X and ¥, progras counter PC, 5
and U stacks, and the D
accumulator,

Name the B8-bit registers of
the 6883,

A and B accumulators, condition
code register CC, and direct
page register DP.

* What is the purpose of the
program counter, PC?

It keeps the machine language
progras rumning in order.

What value does the program
counter hold?

The 16-bit address of the next
instruction to be performed.

Learning the 6&:)9 63

Clock cycles

* What is the purpose of the A
and B registers?

To perfors simple aritheetic.

t What is the D register?

The concatenation of the 8-bit R
and B registers into a single
16-bit register.

#What are the X and VY
registers?

Index registers.

* How are index registers most
often used?

To identify mewory locations.

tHhat are the 5 and U
registers?

The § register is the hardware

stack pointer, and the U
register is the user stack
pointer.

% How are the S and U registers
different?

The U register is reserved for
pushing and pulling program
information; the § register is
used for pushing and pulling as
well as for subroutine calls.

$hat is the purpose of the
condition code register?

The condition code register
provides inforsation about the
most recent instruction exscuted
by the processor.

What is ancther name for the
condition code register?

The flags.

¥ What does the direct page
register store?

The direct page register stores

the most-significant half of an
address.

64 Lesson 8

The CONDITION CODE register, or flags, is an 8-bit
register wherein each bit has a meaning and can be used to
make simple judgments (such as greater than, less than,
equal to, positive, negative, carry, borrow, etc.) within a
program. The Condition Code Register is automatically
modified by the results of machine language instructions,
or can be changed directly by the programmer.

The DIRECT PAGE register, 8 bits wide, is given the
most-significant byte of an address. During Direct
Addressing, the Direct Page register provides this half of
the address, and the program provides the least-significant
half of the address. The result is a complete address which
can be used to access data in memory.

Please read pages 4 and 5, and the first portion of page 6, in the
MC6809E data booklet. This section describes the architecture
of the 6809 processor. Return to the tape when you have com-
pleted the reading.

I wanted you to read that to get a firm idea of the 6809’s
innards. The next step is getting a handle on some of the
6809’s instructions, and for this I'll return to your computer
and to a BASIC program. Turn back to your MC6809E
data booklet, pages 30 and 31. These pages contain an
alphabetical list of the 6809 processor instructions, and are
chock full of information.

In the first column is the generalized mnemonic, such as
ADD, DECrement, LoaD, etc. The second column shows
the specific editor/assembler forms it can take, meaning
how to indicate the registers or memory the instruction can
use. The next block of information is entitled “Addressing
Modes”, and provides detailed information on each
instruction in that mode, its specific opcode in
hexadecimal, the number of bytes the instruction requires
for completion, and the number of clock cycles needed for
the process.

I haven’t mentioned clock cycles before; they are vital to
understand when your programming begins to get
sophisticated. You've probably heard that the Color
Computer runs at .89 MHz. Actually, the precise figure for

the computer’s speed is .894886 MHz, that is, 894,886"

clock pulses per second. Any action taken by the 6809
processor is triggered by one clock pulse; at 894,886 clock
pulses per second, that means that the Color Computer’s
6809 can’t do anything in a shorter time than .00000112
seconds. .00000112 seconds is 1.12 microseconds, slightly
longer than a millionth of a second. Knowing this timing is
important when writing programs that transfer information
properly to the printer port, the RS-232, the cassette, the
disk and other devices. Later, when you begin producing
audio from your computer, knowing the clock cycles
required for each 6809 instruction will be essential.

Gasananal

UK
-I_'La|||0|||o|||oﬁ'
\—v\l

.C00CK//2.
SECONDS

tietielijoeftiof!

, 000002.2%
SECONDS

CcLs

PRINT®(1)
PRINT™® (2}
PRINT" (3}
PRINT" {4}
PRINT" (5}
1@ PRINT" (&)
11 PRINT" (7>
12 PRINT" (&>
13 PRINT" (9
14 PRINT™ (R)
13 PRINT" (B>
16 PRINT" (D)

WEND W

17 PRINTCHR$(191)"

Back to the booklet, page 30. The description column,
toward the right, gives in abbreviated notation the function
of each machine language instruction. The symbols and
abbreviations are explained at tlie bottom of the page;
glance at the ADD instruction. You will discover that
addition using the A Accumulator, mnemonic ADDA, is
valid in four addressing modes. In the immediate mode, for
example, you find that the hexadecimal opcode for this
instruction is 8B, that the complete instruction consists of 2
bytes, and that it takes 2 clock cycles (that is, 2.24
microseconds) to execute. The description column says
that the result of A Accumulator plus a value from memory
is transferred into the A Accumulator.

The last group of columns provides detailed information
about the condition code register — how each flag is
affected by the instruction. In the case of the ADDA
instruction, all five condition code bits are affected (either
set or reset) by the results of that command.

These are pretty dense pages. In order to simplify them a
little, I've put together a program in BASIC. It’s fairly long,
§o while it’s loading, start to get familiar with pages 30 and
31. By the way, there are two program dumps on the tape,
just to make certain you've got a good one.

Program #13, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program. [f
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start of the program and try again. For severe
loading problems, see the Appendix.

PRINTSTRING® (32, 45) 3
PRINTSTRING® (S, 191)" INSTRUCTION EXAMPLES
PRINTSTRINGS (32, 43)

"STRING®(S5, 191) ;

ADD (ADD)
AND (LOGICAL. AND)
ASL/ASR (RRITHMETIC SHIFT)
cOm {(COMPLEMENT)
DEC (DECREMENT)
EOR (EXCLUSIVE OR)
INC { INCREMENT)
LSL/LSR (LOGICAL SHIFT)
NEG (NEGATIVE)
OR (LOGICAL DR)
ROL /ROR (ROTATE)
SUR (SURTRACT)

TOUCH i — C TO DEMONSTRATE “;:POKE1535,191

18 AS=INKEY$:IFA$=""THEN18

19 A=ASC(A%)

tA=A-4B:1IFA{1 OR AY19 THEN1AB

ze ONA GOSUB23, 37, 5@, 76, 86,97, 112, 122, 138, 18, 18, 18, 18, 18, 18, 18, 1

43,163, 192
Z1 RUN
2z BOTOZE

23 CLS:NF=@:ZF=0:CF=0@

25 GOSUEERS: IFQR=1THENZ3

26 INPUT"VALUE TO ADD FROM MEMORY OR FROMOTHER REBGISTER (HEX) "j;A

2$:1AE=AES

27 Q=@:G08UB21@;:IFQ=1THENZ3

28 X=A:A2=R:B0SURZ1Z:02%=0%

29 X=A1+A2:A3=X

3@ IFX)ESSTHENX=X-256:CF=1:A3=X
31 IFX=@THENZIF=1

Learning the G809

Execution time

tHow is the direct page
register uued?

In the direct addressing mode,
the register is used to create a
complete address,

What is an addressing mode?

How the machine language progras
gets its information.

What do you call the verbal
description of a processor
comsand?

A mnemonic.

* What is the proper nawe for a
processor command?

fn opcode.

What is the clock speed of the
Color Computer?

.83 MHz (.B894885 MHz or B9, 886
pulses per second).

* How long is one clock pulse on
the Color Computer?

fpproximately .00008112 seconds

or l.i2 microseconds, {More
accurately, 111746
microseconds).

Hom long is a microsecomd?
Ore millionth of a second.

& The ML (multiply) instruction
takes 11 clock cycles. How long
is this on the Color Computer?

11 times 1,11746 microseconds,
or 12.29206 microseconds.
#+1DR immediate and LDB
imediate each take 2 clock
cycles, How long is each
instroction on the Color
Computer?

£ times 1.11746 microseconds, or
2.2349¢ microseconds.

Program #13

51D euntended takes 6 clock
cycles. How long is this?

& times 1.11746 microseconds, or
6. 76476 microseconds.

* Mitiply is A times B, with
the result in D If a
multiplication program consisis
of LDA and LDB imsediate {(each 2
clock cycles), MAtiply (1}
tlock cycles), and STD extended
{6 clock cycles); how long is
this?

(242¢1146) times 1.1174
microseconds, or 23. 46666
microseconds) .

¥ At 23.46666 wmicroseconds per
multiplication progras, how sany
complete multiplication programs
can the Color Computer do in one
second?

The Color Computer can perfors
42,613 multiplication programs
per second,

What iz the purpose of the
condition code register?

The condition code register
provides inforsation about the
wost recent instruction executed

by the processor.

In the following exercises,
give the vresults of the
instruction, where the result is
found, and the effect on the
three flags N, I and C
(rondition codes negative, zero
and carry). For example, the
probles: A contains 841,
Execute ADDA #8CC. The answer:
f contains $8D. Carry flag set.
lero and negative flags reset.

% Problew: A contains $84,
Execute ADDA #$FB.

fnswer: R contains $FF.
Negative flag set. Zero and
carry flags reset.

66 Lesson 8

32 GOSUBEIZ:03%$=0R%
33 PRINT

34 PRINTTAB(S)Q1s"
NE$ (2@, 45) : PRINTTRE(S) Q3"
EPRINTHEX$ (R3)

35 GOSUBZE4

36 GOSURS22:RETURN

37 CLS:NF=0:ZIF=Q:CF=@

38 PRINT"--)> LOGICAL AND TWO NUMBERS (--*;

39 GOSUR=E5: IFQR@=1THEN37

4@ INPUT"VALUE TO AND FROM MEMORY OR FROMOTHER REGISTER (HEX) ":iA
2FAE=AZE

41 O=@:G0SURZ1@: IFQ=1THEN37

42 X=R:A2=A:6B08UBE1Z:QE$=Q%

43 X= A1 AND A2 : RA3=X

44 IFX=@THENZF=1
4% GOSUBZ21Z2:Q3%=0%
46 PRINT

47 PRINTTRE(S)Q1s$»
NG$ (2@, 45) : PRINTTAEB(S)Q3%"
PRINTHEX$ (R3)

48 GOSUBRZZ4
43 GBOSUBSEZ:RETURN

S@ CLS:NF=@R:ZF=0:CF=Q

51 PRINT"ARITHMETIC SHIFT LEFT OR RIGHT"$PRINT®TOUCH L OR R

ST AS=INKEY$: IFAS="L"0RA$="1"THENSIELSEIFR$="R"BRA$="r"THENG3ELS
STy

53 CLSsPRINT"——--> ARITHMETIC SHIFT LEFT (-

54 GOSUBRZES: IFOO=1THENSS

55 X=A#*z:1Aa=X

36 IFX) 23STHENX=X-256:CF=1:A2=

57 IFX=@ATHENZF=1

S8 GOSUBRZ1c:QE$=0%

59 PRINT

6 PRINTTAR(S)G1s" "A1$E:PRINTTRAB(S) " {~~—— SHIFT --—~":PRINTTRE
(3 0s” "3 IFASCKIGTHENPRINT"@"+HEX$ (AZ) ELSEPRINTHEXS (A2)

&1 GOSUBEZ4

6& GOSURSEE: RETURN

63 CLS:PRINT"=~~} ARITHMETIC SHIFT RIGHT ({(———";

64 GOSUBZES: IFQO=1THENGS

65 IFRY 1E7THENNF=1

66 X=FIX{R/&) 1 IFX)B3THENX=X OR1z8:RZ=X:ELSEARS=

&7 IF{A/Z) OFIX(A/2) THENCF=1

68 IFX=@THENIZF=1

69 GDSUBRZ1Z2:0z%=0%

7@ PRINT

71 PRINTTAR(SYO1s "Al$:PRINTTABR(S) " ———~ BHIFT ————)":PRINTTARE
(Sraes" "3 IFAZ{1ETHENPRINT"@"+HEX$ (RZ) ELSEPRINTHEXS$ (AE)

72 GOSUBEZ4

73 IFNF=1 THEN PRINT:PRINT"NOTE BIT 73 SEE DATA ROOKLET.":G0TO7S
74 1IFCF=1 AND NF=@ THEN PRINT:PRINT"NOTE CARRY FLAG; SEE DATA BO
Or. "

75 GOSUBZE2:RETURN

76 CLB:NF=@:IF=@:CF=1

77 PRINT»—=-~-~) COMPLEMENT A NUMBER (-—--"

78 GDSUBZES: IFRR=1THEN76

77 X=NOTR AND Z55:RE=X:GOSURZ12:G2%=0%

8 IFX=@THENZIF=1

81 IFX> 127THENNF=1

82 PRINT:PRINTTAER(SIDis$" "A1$:PRINTTAR(S) "#* COMPLEMENT *%":PR
INTTARER(S) Qas™ "3 s IFAZ (I6THENPRINT"@"+HEX$ (A2) ELSEPRINTHEX$ (R2

"ALE:PRINTTAR(S) RE$™ "A2$: PRINTTARE(S) 8TRI
"3:IFA3(16THENPRINT"@"+HEX®$ (R3) ELS

“"Al$: PRINTTAR(D) Qas” "AZ$: PRINTTRAR(E) STRI
"3 IFAS (16THENPRINT"@"+HEX® (RZ)ELSE

83 GDSUBZZ4
84 PRINT:PRINT"NOTE CARRY FLAG; SEE DATA ROOK."

85 GOBUBSES:RETURN

86 CLS:NF=@:ZF=2:CF=@

87 PRINT"-—~-—) DECREMENT A NUMBER (————*

88 BOSUREES: IFQA=1THENBE

83 X=A-1:AS=X:IFX (AQTHENX=255:A2=X :NF=1

9@ IFX=@THENZF=1

91 IFX) 127THERNNF=1

92 GOSURZ1Z:08$=0%

93 RRINT

34 PRINTTAR(S)Q1s" "A1%$:PRINTTAB(S) "#% DECREMENT ##" :PRINTTAB(
5)Ras" " s IFAS (IETHENPRINT "@" +HEX$® (AZ) ELSEPRINTHEX$ (AZ)

25 GOSURSE4

96 GOSUESEE:RETURN

37 CLS:NF=@:2F=@:CF =@

38 PRINT"LOGICAL EXCLUSIVE-OR TWO NUMEERS";

39 GOSUBS2S: IFOD=1THENY?

1@@ INPUT"VARLUE TO EXCLUSIVE-OR, TAKEN
OTHER _REGISTER":R&%:AS=ASE

121 QO=@:G0SUBZ1@: IFGR=1THENI?7

FROM MEMORY OR FROM AN

iz
1&3
104
125
12&
1@7
18

INGS (2@, 45) :PRINTTRABR(S) Q3%"

X=A3AE=R:GOSURZ1Z:A&$=0Q%

X=(A1 AND NOT{AZ))> OR (NOT(A1)
IFX=QTHENZF=]
IFX) 127 THENNF=1
GOSUBZ1E:03%=0%
PRINT
PRINTTRAR(S)D1%"

AanD A& sA3=X

"A1$:PRINTTAE (D) QEs" "RZHIARINTTRAE(S) STR
"1 IFASIGTHENPRINT"@"+HEX® (A3) &L

SEPRINTHEX® (R3)

i@a9
1i@
111
112
113
114
115
il6
117
iia
113

(5) 02s"

12@
1z1
1z2&
123
14

E0SUBRZZ4

GOSUEBZ2=E2 : RETURN

RETURN

CLS:NF=Q: ZF=0:CF=@

PRINT"——~—) INCREMENT A NUMEER
GOSUBRZES: IFQO=1THENL1Z

X=+1 :AE=X IFX) 25STHENX=Q:AZ=X: ZF=1 : NF =@

IFX> 127 THENNF=1

GOSURZ1Z: Q2%=0%

PRINT

PRINTTAEB(SD Q14" "Al%:PRINTTAEB(S) "#% INCREMENT ##":PRINTTAR
"33 IFAZ (16THENPRINT @ "+HEX$ (AZ) ELSEPRINTHEXS (A2)
GOSURET4

GOSUBZ2Z2 s RETURN

CLE:NF=@: ZF=@:CF=@

PRINT") LOGICAL SHIFT LEFT DR RIGHT «(¢

PRINT"TOUCH L. OR R"

o

125 As=INKEY$:IFA$="L"DRA%="1"THENIZ6GELSEIFR$="R"ORA$="r"THEN1Z9
ELSE125

186 CLS:PRINT"-———) LOBICAL SHIFT LEFT {~=—==

127 GOSUBREZES: IFQR=1THENIZE

128 BOTOSS

129 CLS:PRINT"——--) LOGICAL SHIFT RIGHT {(———-"

132 GDSUBRE2S: IFQR=1THEN1&9

131 X=FIX{(A/2):A2=X:IFA/2OFIX{A/2) THENCF=1

1328 IFX=@THENZF=1

133 GOSUBZ12:02%=0%

134 PRINT

135 PRINTTAR(S OQ1%" "Al$:PRINTTAR(S) "~——— SHIFT —~~=)":PRINTTA
B(5)Qzs" "3t IFAZ (16THENPRINT"@"+HEX$ (RE) ELSEPRINTHEXS$ (A2)

136 GOSUB2IZ4

137 GOSUEEZEEZ:RETURN

138 CLS:NF=@:ZF=@:CF=Q

133 PRINT"——r—w— » NEGATE A NUMBER (———=——— "

14@ GOSUBZES: IFRQR=1THENL 38

141 REM

142 REM

143 X=(NOTA AND 255)+1:A2=X:B05UB212:02%=0%

144 IFX=@THENZIF=1:CF=1

145 IFXY 127THENNF=1

146 PRINT:PRINTTAEB(S)Q1%" "Al1$:PRINTTAB(S) "#* NEGATIVE #*#":PRI
NTTRAB (D) QEs" "3 IFRZ(16THENPRINT"@"+HEX$ (A2) ELSEPRINTHEXS$ (R2)
147 GOSUBZE4

148 GOSUBEEZ:RETURN

143
15@
151

15&

CLS:NF=@:2F=0:CF=@

PRINT"——~) LOGICAL OR TWD NUMRERS {(—--"3

GOSUEBZES: IFQA=1THEN143

INPUT"VALUE TO DR FROM MEMORY OR FROM ANDTHER REBISTER (HEX)

"iREs AS=REE

153
154
155
156
157
158
159
iea

INGS (2@, 45) : PRINTTAB{(S) Q3%"

0Q=2;G0SUBRZ1@: IFQA=1THEN143
X=A:AS=R:GOSUBZ12:02%=0%
X=A1 OR AZ : A3=X
IFX=0THENZF=1
IFX) 127 THENNF=1
GOSURZ12:03%=0%
PRINT
PRINTTAR(SYQ1$" "A2H: PRINTTAR(S) STR
"3 :IFA3S(IETHENPRINT"@"+HEX$ (A3) EL

"AlE:PRINTTAR(S) Qs

SEPRINTHEX$ (R3)

161 GOSURZZA

162 GOSURZE2:RETURN

163 CLS:NF=@:ZF=R:CF=0

164 PRINT"----) RDTATE LEFT OR RIBHT (~—~-"3

165 PRINT"TOUCH L OR R"

166 A$=INKEYS$: IFR$="L"0ORAS="1"THENIG7ELSEIFA$="R"DRA$="r"THEN18Q
ELSE166

167 CLS:PRINT"STATE OF CARRY FLABG? (@ OR 1) ";

168 A$=INKEY$:IFA$="0" OR A$="1"THENPRINTA%:CF=VAL (A%) :EL.SE168
163 GOSUBZES: IFQA=1THENLGT

17@ X=A#*z:Ag=X

171 IFX{(2E6THENX=X ORCF:AZ=X:CF=0:G0TO173:ELSE172

172 X=X-256: X=X ORCF:CF=1:A2=X

173 IFX=@QTHENZF=1

174 IFXX1Z7THENNF=1

Learning the

Program #13

Problem: B comtains SRR
Execute ANDB #6335,
fnswers B contains 398, lero

flag set. MNegative flag reset.
Carry flag unaffected.

Problem: B contains AR,
Execute ANDR #65F.

finswer: B contains SR, lero
and negative flags reset. Carry
flag unafficted.

+ Problews f contains $FF.
Execute DR} #$A5.
Arswers A comtains $F.

Negative flag set. lerc flag
reset. Carvy flag uvmaffected.

% Problem: A contains $AR.
Execute DR\ #4$55.

Ancwer: A contains $FF,
Negative flag set. Zero flag
reset. Carvy flag unaffected.

Problem: R contains %00,
Execute ORS) 3608

Answer: A contains $88. Zero
flag set. Negative flag reset.
Carry flag unaffected.

% Problewm: B contains $FG.
Execute ORB J$0F,

Answer: B contains SFF.
Negative flag set. Zero flag
reset. Carry flag unaffected.
-# Problems B comtaine OFF.
Execute COMB.

fnswer: B comtains $08. lero

flag set. Negative flag reset.
Carry flag 2lways set by COM
instruction.

Probles:
Execute COMA.

f contains $PAR.

fnswer: R contains $55. Iero
and negative flags reset. Carry
flag always set by COM
instruction.

67

Flags

* Probles: A contains 484,
Execute ADDA #$FC.

frswer: A contains $08. levo
and carry flags set. Negative
flag reset.

Problem: A containg $04.
Execute ADDA #$FD.

Pnswer: A contains #81. Carry
flag set. Negative and 2evo
flags reset.

+ Problem: B contains $80.
Execute SUBB #%01.

fmswer: B contains $7F, All
flags reset.

* Problews B contains $81.
Execute SUBB #981.

B contains $B8,
lero and

Answer:
Negative flag set.
carry flags reset.

Problem: B contains $88,
Execute SUBB #$88.

Answer: B contains $88. lero
flag set. Negative and carry
flags reset.

Problem: B contains $88.

Execute SUBB #$B1.

Fnswer: B contains §FF.
Negative and carry flags set.
lerc flag reset.

Problem: A contains $FF.
Execute ANDA MFF.

Answer: A contains §FF.
Negative flag set. levo flag
reset. Carry flag umaffected.

+ Problem: f containg OFF.
Execute ANDR #$A5.

Answer A contains A5,

Negative flag set. Zero flag
reset. Carry fiag waffected.

68 Lesson 8

175 GOSUBEL1Z:DE$=R¢

176 PRINT

177 PRINTTAB(S) 1" "A1$:PRINTTRB(S) " {——— ROTATE —-——":PRINTTAR
(Sryaes” "1 IFAZ (16THENPRINT"@"+HEX® (RZ) ELSEPRINTHEXS$ (A2}

178 GOSUBZ24

179 GOSBUEZZEZ:RETURN

18@ CLS:PRINT"STATE OF CARRY FLAG? (& OR 1) "3

181 A$=INKEY$:IFA$="0" OR A$="1"THENPRINTA%:CF=VAL (R%):ELSE181
182 GOSUBRZZS5: IFGO=1THEN1IBR

183 X=(FIX(R/Z)1)0R(CF%128) :AE=X

184 IFFIX(A/E) (YA/ETHENCF=1ELSECF=Q

185 IFX=@THENZF=1

186 IFX) 127THENNF=1

187 GOSURZ1Z:Qoe=0%

188 PRINT

183 PRINTTAB(SIGIs" "Al$:PRINTTARE(S) "~-~ ROTATE ——-)":PRINTTRE
(Syaes” "3 IFAZ (16THENPRINT@"+HEX$ (A2) ELSEPRINTHEX$ (R}

192 GOSURZZ4

191 GOSUEEEE: RETURN

138 CLS:NF=@:ZF=@:CF=0

193 PRINT"~-~-) SUBTRACT TWO NUMBERS (-—--"3
134 GOSURZES: IFQR=1THEN13Z

195 REM

196 REM

137 INPUT"VALUE TO SUEBTRACT, TRKEN FROM MEMORY OR OTHER REGIST
ER (HEX)":AZ%:A$=AZ%

198 GE=@:G05URZ1Q: IFQMU=1THEN19Z

199 X=A:PS=A:B0SUBE 12 :0a%=0%

SQ@ X=A1-AZ:A3=X

Z@1 IFX(ATHENCF=1:X=X+25&:A3=X

T@E IFX=@THENIF=1
Z@B3 IFX) IE7THENNF=1
s4 GOSURZIZ:R3E=UE
=S PRINT

206 PRINTTAB(S)QELIE"
INGS (2@, 45) : PRINTTAR (D) D3%"
SEPRINTHEXS (A3)

"ALFPRINTTAR(S) GES" TAES: PRINTTAR(SIETR
Y3t IFASIETHENPRINT '@ +H5EXS (A3) EL

@3 FORN=1TO1@@&:NEXT:RETURN
21@ A=VAL ("&H"+AR$) : IFA@ 3R AYESS THEN PRINT"VALUE OUT OF RANBGE™"
:GOSURZRATF:G6G=1 : RETURN
Z1i OR=@:RETURN

C=INT(X/18) :D=C*1&8

E=INT((X-D} /64) :F=E*E4

B=INT ((X-D-F) /3&) : H=G*32

I=INT ((X~D-F-H)/16) : J=1%16

K=INT ((X~-D-F~H~J) /8) :L.=K*8

M=INT ((X=D—-F~H-J=-L) /4) : N=Mx4

O=INT ({(X=D-F-H-J-L-N) /2) : P=0%*&

Q=INT (X-D~F-H-J-L-N~P)

QE=STR$ (C) +5TRS(E)+STRE(BI+STRE (1) +8TRE (K) +8TR$ (M) +ETR$ (03 +S
[£e)}

RETURN

PRINT"PRESS ENTER TD CONTINUE";

A$=INKEY$: IFA%$ () CHR$ (13) THENZ23ZEL.SERETURN

PRINT:PRINT"FLAGS: “:PRINTTREB(7)"N Z C":PRINTTRAB(6)C:ZF;CF:
NT : RETURN

INPUT"VALUE IN ACCUMULATOR (HEX) ";A1s$:AE=N1$

QO=&:GOSUBE1@: IFRA=1THENRETURN

X=A:A1=A:508UE212:Q1$=0%

RETURN

ODNOU = PWU-®#UBNDUS

To P PO FO O Mo Fe B o =3 B0 TG f T0 Fo Fu B0 O R FO
PO T O PG S0 PO FO MO [0 0 [0 5 e o ko e e e b o

RUN this program. On the screen are 12 common
instructions selected from the total of 59 that the 6809
processor can execute. For your amusement, I've
numbered them in hexadecimal.

Some of the instructions will already be familiar, but I'd like
you to get a detailed idea of how each one works, and what
its results are. Here’s how it goes. You will input all values
in hexadecimal, but the display will be done in both hex and
binary, so that the inner workings of each instruction will be
evident. Although there are five flags, I've chosen only the
most used ones (negative, zero, and carry) to display in
these examples.

App

0000 000/ FOi
1 cooo ccos HF01
OO0 OO0 402

ADD

/000 OO/ 48

+ /000 dc/

0C00 O0/0 $OZ
e

o f
,}A

Frm

SUBTRACT

ocoo/ coco %[0
— 0000 1 /00 404

QOO0 G/00 FOL

SUBTRACT

ocn/ 0cod +i
— 000! ao0/ -H||

A
Bz
TS

é\

AND

%

FFE

s 7147 L4454 W%
'

You can start with a familiar instruction, selection #1,
ADD. Touch 1 on the keyboard.

As you can see, for simplicity I'm making the assumption
that the initial value will always be in an accumulator, and
that all values will be 8 bits. Enter hex number 01 as the
accumulator value. The second prompt appears. To the
accumulator value will be added a value from memory or
from another register in the processor. You'll add 1 to this.
Type $01 and hit <ENTER>.

On your display are the two numbers being added, and the
result, which is $02. All three are displayed in both binary
and hexadecimal. The flags reveal three pieces of
information: that the resulting number is not negative, it is
not zero, and there was no carry generated by the
calculation.

Hit <ENTER>>, and touch 1 again. This time, enter hex
$81 into the accumulator. Add to this the value hex $81.
The result is the same as before — $02, But the carry flag
reveals something very important. It tells you that,
although the apparent 8-bit result is $02, the addition
actually produced a number larger than 8 bits.

Now some subtraction. Hit <ENTER>, and touch
selection C. Enter $10 into the accumulator. From this,
subtract the value, say, $04. The result is $0C, a non-zero
positive number, as the flags indicate. Hit ZENTER> and
touch C again. Enter $10 into the accumulator again, but
this time subtract $11. The result is $FF. The flags tell the
story. It is a negative number, and the carry/borrow flag
shows that a borrow was required to complete it. That
carry/borrow flag is vital to recognize.

Add and subtract are straightforward. Try each of them a
few times at the end of this lesson. I'll go through the rest of
the instructions in this group. When I’'m done, you're on
your own for a while. Let me walk over to the kitchen. ..

Hit <ENTER> to get back to the menu. You've tried ADD
and SUBtract, so now touch 2 for logical AND. This is the
first of the logical instructions (also called Boolean
Algebra, but we’ll forget that term). Logical AND requires
both statements of a pair to be true for the result to be true.
For example, this statement demonstrates logical AND: “If
I break this plate AND Claire sees the broken plate, then
she will scream at me”. If either statement is not true —
that is, if either I didn’t break the plate, or if Claire didn’t
see the broken plate — then I'll get off. Here comes Claire
now. <Breaking plate. “Look, you broke that plate!
Arrrggh!!” etc.> Likewise, in binary arithmetic, both bits
must be ones — that is, both bits must be true — for the
result to be true. Enter $FF into the accumulator, and $00
into memory. Each bit of the accumulator is ANDed with
each corresponding bit in the operand. The results here are
all zeros. The zero flag goes on.

Learning the 6809

ADD, SUBtract, AND

+ Probles: fi contains $EC.
Execute COMA.

fnswer: A contains $13. lero
and negative flags reset. Carry

flag always set by (DM
instruction.

Problam: A contains $47.
Execute COMA.
Answer: A contains $BA.

Negative flag set. 2evo flag
reset. Carry flag always set by
COM instruction,

Probles: B contains $6F.
Execute COMB.
Answers B contains OF8.

Negative flag set. lero flag
reset. Carry flag always set by
oM instruction.

Problem: R contains SAA.
Execute EDRR #5908,

Answer: A still contains $AA.
Negative flag set. lZevo flag
reset, Carry flag not
affected.

+ Problem: A contains $OR.
Execute EGRR #%4R.

fnswer: A comtainc $08. lero
flag set. Negative flag reset.
Carry flag not affected.

Problem: A contains $PA.
Execute EORR $$FF.

Answer: A contains 55,
Negative and zero flag reset.
Carry flag not affected. Has
effect of COMR except does not
affect carry flag.

Probles: B contains $08.
Execute EDRB #$CB.

fnswer: B contains #SCB,
Negative flag set. Zero flag
reset. Carry flag mot
affected.

69

OR, Exclusive OR

Problem:
Execute ASLA.

A contains

fnswer: A contains S$IE, All
flags reset.
+ Probles: f contains
Execute RSRA.

fmcwer: A contains @7, All
flags reset.
$B8.

Problew: A contains

Execute RSLA.

fnswer: A contains $18, Carry
flag set as bit drops into
“bucket®. Negative and 2zevo
flags reset.
Probles: A contaims $8B.
Execute ASAA,

(bit 7
Negative

fnswer: A contains $C4
duplicated at left).

flag set. lero and carry flags
reset.

Probles: B contains 688,
Carry flag is set. Execute
ROLB.

fnswer: B contains $11. Carry
flag set. Zero amd negative
flags reset.

% Problew: B contains %68,
Carry flag is set. Execute
RORB.

Prnswer: B contains $C4.

Negative flag is set. Carry and
zero flags are reset.

+ Probles: A contains $82.
Execute DECA.
Pnswer: A contains $O1,

Negative and zero flags reset.
Carry flag not affected.

Problem: f contains $61.
Execute DECA.
Prswer: P contains $08. lero

flag set. Negative flag reset.
Carry flag not affected.

70 Lesson 8

Hit <ENTER>>, and touch 2. Again enter $FF into the
accumulator. This time try $AA as the memory contents,
and hit <ENTER>. Each bit of the pairis ANDed, and the
result is $AA. The negative flag flips on.

Contrast this with logical OR. Hit <ENTER>, and touch
A. Logical OR states that if either or both of two conditions
is true, then the result will be true. For example, this
statement describes logical OR: “If I eat this pie ORI eat
this ice cream, then I will be pleased.” Binary numbers
can’t measure my level of pleasure, but they canreport that
<mouth full> I will be pleased if I eat either the pie or the
ice cream, or if I eat both. Likewise, in binary arithmetic, if
either number is a one — that is, if either number is true —
the result will be true.

Enter $FF into the accumulator. Then enter $00 as the
operand. You can see two things: first, you find that since
all bits in the accumulator are one, all bits in the result will
be one, regardless of the operand; second, the negative flag
flips on because bit 7 is a one. Hit <ENTER>>, touch A,
and put $55 in the accumulator this time. As the operand,
enter $AA. The numbers 1 chose here have alternating bits,
just to demonstrate that neither byte need have bits in
common — it is truly an either/or situation. Note the
negative flag is on.

Just one more OR. Hit <ENTER>>, and touch A. Put $0C
in the accumulator, and $CO into the operand. In this
example, you can see that where neither bitis true, zeros do
result from the logical OR process. Again, you'll want to try
examples of logical OR at the end of the lesson.

Move on to COMplement, selection 4. Hit <KENTER>,
and touch 4. A number’s complement is created by
reversing all the binary digits in that number; it’s the
equivalentof alogical NOT. For example, enter $A5. All the
zeros become ones, all the ones become zeros. The result
after the complement is $5A. Hit <ENTER>, touch 4, and
place $FF in the accumulator. The complement of $FF is
$00. The zero flag flips on. Notice that in this instruction,
the carry flag always turns on, regardless of the result,
merely to indicate the completion of the instruction.

The logical Exclusive-OR instruction is next. This is a
command used to “toggle” individual bits. You understand
how logical AND, OR and NOT work. Just for review, two
binary values ANDed together give a one result only if both
values are one, as | mentioned above. Two binary values
ORed together give a one result if either value is a one.
Logical NOT simply flips one bits to zero, and zero bits to
one, as in the COMplement statement you've already
tried.

Logical Exclusive-OR gives a true result if either, but not
both, of the premises are true. That’s a little hard to
analogize toreal life, but since I'm still here in the kitchen, it
might go something like this: “If I eat this full-course
Chinese dinner Exclusive-OR ifI eat this full-course Italian

OR.

L2070 L4471
RSO0 AS00

Y
= 55

Q/// ////

,N\

OR,

¥FF

Or6) Oro/
R {O0/0 [O7O

b4
R

ﬁ)/” 7777

‘N"

’f//l'\

SR

Fer

D000 /00
CR 1100 008o

« 35

(j'oo //Oo

va

OR

¢

e

V,

o\

COMPLEMENT

aMp /D70 O/0/7

COMP $AS

orar oot

E 27N

COMPLEMENT

COMP //7/ /171 COMP BFF

0000 000 g

CoMPLEMENT
SYMEDL-

o T oo

EXCULUSIVE OR

/GO0 OO0 *80
BOR /OO0 OO0 EOR 8D
0000 OO k- te o

—"\M‘/k

=ZZ

///,VJ\‘F

EXCLUSIVE. OR,

o000 000 Foo
BEOR /000 Qo000 EREE0
] 000 000G 8

Z
i\

EXUUSIVE. OR-

ool orro 46
R OAIO o/ /70 R FLb
©0/0 o000 322

- Prreratt |

EXULDSIVE
OR

LOGICAL
SYMBoL.

Y

= XNY

dinner, then I will be content.” If I eat neither, I won’t be
content; if I eat both, I'll probably explode. Logical
Exclusive-OR is the equivalent of the quantity (A and NOT
B) ORed with the quantity (NOT A and B) . .. but that’s not
very revealing either.

Try it this way: if two bits are different, the result will be
one. If the bits are the same, the result will be zero. What
makes this idea useful is that information can be “toggled”
back and forth between numbers. Turn to the program fora
visual example.

Hit <ENTER> and touch 6. You're going to toggle
between, say, $80 and $00. Enter $80 into the accumulator.
Pause here and think about hex $80 and $00. In binary, $80
is 1000 0000, and $00 is 0000 0000. Only bit 7 is different
here. You need to find a value that, when Ex-ORed with
1000 0000, gives 0000 0000. Recall how Exclusive-OR
works: to get a zero result, the two bits being Ex-ORed
must be the same. That suggests that 10000000 Ex-ORed
with 1000 0000 should give an all-zero result. So the hex
equivalent of 10000000 is what you want . . . and that’s $80.
Enter $80, and look at the binary display. Incidentally, the
zero flag flipped on.

Hit <ENTER> and touch 6 again. This time, enter the
result from the Ex-OR you just did. Enter $00 into the
accumulator. And enter $80 as the operand. The result is
$80. Here's why Exclusive-OR is called a toggle function.
When value X is Ex-ORed with value Q, the result is value
Y. When value Y is Ex-ORed with value Q, the result is
value X. Under the Exclusive-OR function, value Q
becomes atoggle, flipping back and forth between values X
and Y.

Remember the flashing “F” at the top of the screen when
you load cassettes into the Color Computer? This
alternates value $46 with value $66. Hit <ENTER> and
touch 6 again. Enter $46 into the accumulator, and $66 as
the operand. The result should be $20. $20 can then be
used in a program as a toggling value. $46 Exclusive OR
$20 is $66, $66 EOR $20 is $46. Uppercase F becomes
lowercase F, and vice versa. And the advantage to a
toggling value is this: you don’t have to know which state
the original value is in to toggle it. That’s ideal, because in
this example, the tape-loading program doesn’t have to
keep track of which “F” it's displayed.

But enough of Exclusive-OR. You can try it at the end of
this lesson.

Shifts and rotates are interesting commands. Essentially,
they are binary multiplication or division by two. In the
decimal system, a left shift is multiplication by ten, a right
shift is division by ten. If that doesn’t make immediate
sense, consider the number 247. Shift it to the left and it
becomes 2470; shift 247 to the right and itbecomes 24.7 ...
multiplication and division by ten. The difference between
types of binary shifts in the 6809 has to do with what
happens to the bits on either end of the byte.

Learning the

Exclusive OR

+ Problem: A contains $0@.
Execute DECA.

Answer: A contains $FF.
Negative flag is set. Zerc flag
is reset. Carry flag not
affected.

+ Problem: B contains $FE,
Execute INCB.

Answer: B contains $FF.
Negative flag is set. Zero flag
is reset, Carry flag not
affected.

* Problem: B contains §FF.

Execute INCR.

Answer: B contains $08. Zero
flag is set. Nepative flag is

reset. Carry flag not
affected.

Probles: B contains $08.
Execute INCB.

Answer: B contains $@1.

Negative and zero flags are

reset, Carry flag not
affected.
* Problem: B contains $01.

Execute NEGB.

Answer: B contains $FF.
Negative and carry flags are
set. lero flag is reset.

* Problem:
Execute NEGB.

B comtains $08.

Answer: B contains $08, lero
flag is set. Negative and carry
flags are reset,

* Problew: B contains $B80.
Execute NEGB.
Answer: B contains $B0.

Negative amd carry flags are
set. Zero flag is reset.

Problem:
Execute NEGA.

A contains $AA.

fnswer: A contains $56. Al
flags are reset,

6809 =

Left and right shifts

% What is the purpose of the
condition code register?

The condition code register
provides information about the
wost recent instruction executed
by the processor,

72 Lesson 8

An arithmetic shift to the left puts a zero into the rightmost
position; a similar shift to the right leaves a trail of the value
of the leftmost bit. The bit that is shifted out the end of the
byte fallsinto the carry flag; in a situation like this, the carry
flag is sometimes called a “bit bucket”. A logical shiftleft is
identical to an arithmetic shift, but a logical shift right
leaves a zero in the leftmost position. Again, the bit falling
off the end drops into the carry flag. Finally, a rotate
command is circular, as the bits move left or right through
the carry flag. Try the arithmetic shift here.

Hit <ENTER>, and touch 3. You've got a prompt for an
arithmetic shift. Do the left shift first; touch L. Put a hex
value $FF into the accumulator. The row of bits is shifted
left, a zero follows from the right, and the leftmost bit ends
up in the carry flag. Notice that since bit 7 is high, the
negative flag also goes up.

ARTHMETIC.
LEFT SHIFT

K [AAAZAAAN < O $ee
i W

§;<:J [/]/]/I/I/l/[/[oj? $FE
EZN

by ‘\.J,//W“
zC7 :N%
AN G

Hit <ENTER>, and touch 3. Touch L again. Put $55 into
the accumulator. Notice how the bits all move left. This
number turns negative (becoming $AA), but the carry flagis
zero. You can explore all those details later; try aright shift

now.
AR[THMETIC.
LEFT SWFT

< e Aol el7] <o $95

[N MA
SO FREISIEl ol +#
j PG
=N
PN

1

LEFT SuiFT

(&)< [Tl elolo]ole]e] 4O $&0

M.r»/_ vvhgb
%411 BERRRRERER $00
LL o4
re M R ’
Tz e
7v%x 7

Hit <ENTER?>, touch 3, and touch R. Put $80 into the
accumulator. This time observe bit 7, the leftmost bit. It
begins to leave a trail of ones behind it; the value after
shifting is $€0. Hit <ENTER?>>, touch 3, touch R, and
enter $CO. The trail of ones continues to follow.

ARITHMETIC.
RIGHT SHIFT
[Ieeloelolole] =p[€] 480
Ry
;;[/I’IOIOIOIOIOJOJ =P %o
T

R
e

)}\l\;"

7
<& z470 <&

B 2475p

TELREMENT

TEL. /000 o0o/ +8!

7600 6o00 $60
N

5NE
vy

TECREMENT

DEC. 7200 8080 $e0

Ot 1107 $7F

TECREMENT

DEL OO0 oo 35
1007 2777 $FF

-I'A’/IL

ZN&

v

N

INCREMENT

IN. 0000 ©/// INCHOT
000D /000 EYe)

INCREMENT

INC o174 11717 e $7F
/000 oo 285
\\N/.(
SN
EUS
s

INCREMENT

We. 77747 72727 (S22
Q0O OO0
}%Jvﬂ.,»

7"1‘1"\:

NEGKTE-

NEGs 0008 OO0/ Nes$F1
/1727 sl f BFF
Wiy)wp/
iN 2C¢
KR NRIR

NEGATE.

NEG /006 003 NEG$8O

/060 o000 $80
S.\\lf LZ 2 } /{:‘

Ry
AT

INCrement, DECrement, NEGate

I'm going to skip doing the Logical Shifts and Rotates in
this explanation; you can check out selection 8 and
selection B on your own at the end of the lesson.

Move on to the next 6809 processor command. Hit
<ENTER>, and touch 5. This is a decrement by one
command. Enter $81 into the accumulator. $81 minus one
is $80. The negative flag is on. Decrement it one more time;
hit LZENTER>, touch 5, and put $80 into the accumulator.
The value becomes $7F; the negative flag is off. One more
thing to notice with the decrement command. Hit
<ENTER>, touch 5, and put $00 into the accumulator.
$00 minus 1 is $FF. The negative flag flips on.

The opposite of the decrement is the increment, also a
straightforward command. Hit <ENTER>, and touch 7.
Enter $07 into the accumulator. The value is incremented
by one to $08. Not much there; all flags are off. Hit
<ENTER>, and touch 7. This time put $7F into the
accumulator. The value increments from $7F to $80. The
negative flag flips on. Finally, hit KENTER> and touch 7
again. Enter $FF into the accumulator. The number
increments with the result being $00.

There's just one selection left, and that’s NEGQGate,
selection 9. Hit <ENTER>>, and touch 9. Enter $01 into
the accumulator. The negative of $01 is $FF. If you recall
from an earlier lesson, you counted backwards from zero in
one programming example, and it makes sense that one
less than zero, —~1 in decimal, would by $FF in 8-bit data.

Hit <ENTER> and touch 9. Put $80 into the accumulator.
The result is — $80! I'll leave you to check the flags and
ponder that result.

Please review this lesson, spend some time with pages 30
and 31 of the MC6809E data booklet, and — most of all —
keep using this program. Try every example; work the
results out on paper, and see if you agree with the final
display. Examine how the binary data works, how the
instructions perform, and what the flags mean.

Learning the 6809

73

74 Lesson 8

Making things happen on your 6809-based Color
Computer is the point of all this. I've created this series
because your computer is a special machine — not just an
isolated microprocessor, but an interrelated group of
components capable of video, sound, storage and
communication, with add-ons like joysticks and disks and
printers. So while you're making your way through the
intricacies of the 6809 itself, 'm also going to provide you
with the information you need to use the whole
computer.

That means I've got to talk about two things specific to the
Color Computer: memory maps and smart components.

The memory map of your computer describes the way its
65,536 individual addresses are organized . . . what goes
where. Simplicity is always important in laying out a
memory map, and that holds true for the Color Computer.
I've reproduced the Color Computer memory maps in the
documentation so you can follow along.

There are a few special considerations in this machine, but
the memory map I'll describe is what’s set up when you turn
the power on. Read/write memory — also known as
random-access memory, or RAM — is located (talking in
hexadecimal now) from address $0000 to $7FFF. That’s
32K of memory; if you have a 16K computer, your RAM
ends at $3FFF. $4000 to $7FFF remains unused until you
fill it.

The BASIC language is made up of machine-language
instructions and data, so it too occupies part of the memory
map. BASIC is broken up into two halves, each half 8K
long. From hex $8000 to $9FFF you will find Extended
Color BASIC, and from hex $A000 to $BFFF you will find
Color BASIC.

Starting at $C000 is a blank space. As far as the processor is
concerned, no memory is “‘blank” per se, but an off-the-
shelf Color Computer doesn’t have anything connected at
$C000. However, when you plug in a ROMpack cartridge,

Learning the

Practical application of your
6829 learning wmeans knowing
something about this particular
6883 enviromment. fArd that
means knowing the Color Computer
better. It's mot the only 6889
machine there is, so you'll need
to learn all new details if you
purchase a MWhatzit-99 or the

Compublob.

tWhat do you call the
description of how the

computer's designers have
arranged its mesory?
R memory map.

How many memory locations are
there in the Color Computer?

65,536 locations.

+ What is the address range of
the Color Computer, in hex?

$8008 to SFFFF.

How many °"K" is the address
range of the Color Computer?

BAK.

Where in the memory map is
read-write {random—access)
wemory, or RAM, in the Color
Computer on a 16K machine?

RAM is located from SOBOE to
‘mﬂ

6809 =

Map and vectors

COLOR COMPUTER MEMORY MAP

FFoQ@
CARTRIDGE
ROM
Cooe
BASIC
ROM
AQQ0
EXPANSION
ROM
8030
4000
A
3060
32K RAM
2000
16K RAM
1000
060d
4K RAM ?NORMAL VIDEO
0400 DISPLAY
0000
HEX COLOR COMPUTER
ADDRESS USAGE
FFFFORBFFF| 277 |RESET VECTOR LSB
FFFEORBFFE] A® |RESET VECTOR MSB
FFFD OR BFFD| &9 NMI VECTOR LSB
FFFCORBFFC! &/ NM! VECTOR MSB
FFFBORBFFB| ®¢& |SWI1 VECTOR LSB
FFFAORBFFA| o/ SWI11 VECTOR MSB
FFFOORBFFe | oC IRQ VECTOR LSB
FFFBORBFF8 | O/ IRQ VECTOR MSB
FFF7 ORBFF7 | &F FIRQ VECTOR LSB
FFF6 OR BFF6 | O/ FIRQ VECTOR MSB
FFF5 ORBFF5 | @% SWI2 VECTOR LSB
FFF4ORBFF4 | Of SWI2 VECTOR MSB
FFF30RBFF3| A¢© |swi3 VECTOR LSB
FFF2 ORBFF2| &/ SWI3 VECTOR MSB
76 Lesson 9

MEMORY MAP

Memory Map

COURSE

FINE

MC6809E
Address

\

{ $FFFF

\\\

MC6809E - 8
Vectors,
SAM << <
Control,
1/0

ROM2**

{(8=3)

ROM1*#

(§=2)

ROMO**

(s= 1)

i
RAM_
(S=0if RIW = 1)
(S=7if RW = 0)

a.

N
Page 0

i Vgl
Page 1

$FFO0

=~ —-—-1<$Co00
————— ~1<$A000

————— < $8000

—=r - -1<$4000

-~1<$1000
3

<$0000

S2,
S1, S0 MC6809E
Value Address
\/

Label

{dddd

...
"
N

FEFE

RESET

FEED

EFEC

NMI

FFFB

EEFA

SwWi

FFFS

RQ

FEF8

EFF7

FIRQ

FEF6

FEFS

FFF4

Swi2

FFF3

FEF2

SWI3

BrZr2r R ize
K [Pk 0 kn KO e 6 o K K [0 e

FFE3

EFFQ

FEEF

FFEE

FFED

FEEC

Reserved

FFEB

for future

FFEA

MPU

FFES

FFES

enhancements.

FFE7

EEEE

Do not use!

FEES

FFE4

FFE3

EFEQ

FFE1

NN

FFEQ

FEOF

Map

FFDE

Ty Type

Definitions
e

'—*GAKS Static

64KD
[=k
=0 |

% Dynamic
—4K

FAST

FEDD

FFDC

Ml Memory

FFDB

1]1]01]0 FAST

Transparent

Size

FFDA

MO

t{o|1]0 Refresh

—AD. 2
| [~sLow

DS
FFD8

RI MPU

1 11014

FFD?.

RO Rate

FFDG

1101170

FFDS5

FED4

P1 Page #1

FFD3

FED2

Fo

EFD1

FEDQ

F5

FFCF

@
#
=

FFCE

k4 Display

FFCO

EFFCC

F3 Offseat

FECB

(Binary)

EFCA

F2

FECS

FECB

F1

FEC7

FFCE

FO

} MPU Addresses from $0000 tc $7FFF
Apply to page #1 if P1 = ‘1’

Address of “Upper-Left-Most
Display Element = $0000 + (V2K Offset)

DMA
G6R, G6C
G3R
G3C

G2R
G2C
|I_G'IC, G1R

[T Al, AE, S4, S6

FECS

FEC4

vz VDG

1 1 1 1T1i0j0j01]10

EFC3

Mode

FFC2

Vi

1 1107011 11010

FECT

(SAM)

FECQ

Vo

kn s K
nmnbnmn oo oo Pl o Pl P Plel*

LU S O O+ I I O O A}

(4

EFBF

Reserved

FF6Q

Do not use!

FFSF

07777777777

U

~

@
"
2

FFa3

FFa2

1102

FFa1

FF4Q

FF3F

-

~

4

FF23

{S

]
g

FF22

1101

FF21

7

FF20

FF1F

o ~

£FQ3

(S = 4)

FFQ2

1/0p(Slow}

%

FFQ1

FFQ0

Reserved for Future
Control Registers or Speciat /O

*Note:
M.S.
LS.

Most Significant
Least Significant

I

S
c
S

W

1]

Set Bit
Cilear Bit
Device Select value

4xS2 + 2xSt + 1xS0

**May also be RAM

$ (All bits are cleared when SAM is reset.)

Learning the

77

Port map

COLOR COMPUTER MEMORY MAP (cont’d)

FFO@ — FF@3 PIA U8

BIT ¢ = KEYBOARD ROW 1 and right joystick switch
BIT 1= KEYBOARD ROW 2 and left joystick switch
BIT 2 = KEYBOARD ROW3
FF@Q BIT 3= KEYBOARD ROW 4
BIT 4 = KEYBOARD ROW 5
BIT 5= KEYBOARD ROW &
BIT 6 = KEYBOARD ROW 7
BIT 7 = JOYSTICK COMPARISON INPUT

BITG . @=IRQ" to CPU Disabled
C lofthe H |

ontrol of the Horizonta 1=IRQ* to CPU Enabled

sync clock (63.5 microseconds)

BIT 1 @=Flag set on the falling edge of HS
| t |
nterrupt Input 1=Flag set on the rising edge of HS
BIT 2 = Normally 1: @=Changes FF@@ to the data direction register
BIT3=SEL 1: LSB of the two analog MUX select lines

FF@1 BiT4=1 Always
BIT5 =1 Always
BIT 6 Not Used
BIT 7 = Horizontal sync interrupt flag

BIT 0= KEYBOARD COLUMN 1
BIT 1= KEYBOARD COLUMN 2
BIT 2= KEYBOARD COLUMN 3
Frg2 | BIT 3= KEYBOARD COLUMN 4
BIT 4= KEYBOARD COLUMN 5
BIT 5= KEYBOARD COLUMN &
BIT 6= KEYBOARD COLUMN 7
BIT 7= KEYBOARD COLUMN 8

BITO . @=1RQ" to CPU Disabled
Control of the field sync clock 1=IRQ* to CPU Enabled
BIT 1 16.667 Ms Interrupt Input 0= sots flag on falling edge FS
1= sets flag on rising edge FS
FFe3 { BIT2=NORMALLY 1: 0= changes FF02 to the data direction register
BIiT3=SEL 2: MSB of the two analog MUX select lines
BiT 4=1 Always

BIT5 =1 Always
BIT 6 Not Used
BIT 7 = Field sync interrupt flag

78 Lesson 9

FF20 — FF23

FF20

FF21

FF22

FF23

1

|
|
|

\

Peort map

COLOR COMPUTER MEMORY MAP (Cont'd)

PIA U4

BIT @ =CASSETTE DATA INPUT
BIT 1 = RS-232 DATA OUTPUT
BIT2=6BIT D/A LSB
BIT3=6BIT D/A

BiT4=6BIT D/A
BIT5=6BITD/A
BIT6=68ITD/A

BIT7=6BIT D/A MSB

BITO
Control of the CD

BIT 1 RS-232 status Input

BIT 2 = Normally 1:
BIT 3 = Cassette Motor Control:
BiT4 =1 Always

BIT5 =1 Always

BIT6 Not Used

BIT 7 = CD Interrupt Flag

BIT @ = RS-232 DATA INPUT

@=FIRQ" to CPU Disabled
1 = FIRQ" to CPU Enabled
@ = set flag on faliing edge CD
1 = set flag on rising edge CD

@ = changes FF20 to the data direction register

@=O0FF 1=0ON

BIT 1 =SINGLE BIT SOUND OUTPUT

BIT 2= RAM SIZE INPUT
BIT 3 =VDG CONTROL OUTPUT
BIT 4= VDG CONTROL OUTPUT
BIT 5= VDG CONTROL QUTPUT
BIT 6 = VDG CONTROL OUTPUT
BIT 7=VDG CONTROL OUTPUT

BITO
Control of the Cartridge

BIT 1 Interrupt Input

BIT 2 = Normally 1:
BIT 3 = Six BIT Sound Enable
BIT4 =1 Always

BITS =1 Always

BIT6 = Not Used

BIT7 = Cartridge Interrupt Flag

LOW = 4K

HIGH = 16K
Css

GM@ & INT/EXT
GM1

GM2

A/G

@ = FIRQ™ to CPU Disabled
= FIRQ* to CPU Enabled

@ = sets flag on falling edge CART*
1 = sets flag on rising edge CART™

@ = changes FF22 to the data direction register

Learning the 68C)9

79

The SAM

% What is the range of RAM on a
32K machine?

RAM is located from $0088 to
$TFFF.

¥ The Color Computer’s operating
language is located in what kind
of mewory?

Read-only memory, or ROM.

The Color Computer's operating
language is in two linked parts.
What are they called?

Color BASIC and Extended Color
BASIC.

* Where is Color BASIC in the
senory sap?

From $h082 to $BFFF.

Where is Extended Color BASIC
in the mewory map?

From $8088 to $9FFF.

What is located from $COB8 to
$FEFF on an off-the-shelf the
Color Computer?

Nothing; the space is reserved.

What is the space from $CO00
to $FEFF reserved for?

For plug-in cartridge RDM, also
called ROMpacks or program

cartridges.

What is located in the memory
wap from $FFO8 to $FFFF?

MCGBBIE vectors, SAK control and
1/0.

What is the SAM?

The Synchronous Address

Multiplexer.
+ What does 1/0 mean?

1/0 means input/output.

80 Lesson 9

the addresses from $C000 to $FEFF are decoded for use by
the ROMpack. Notice I said $C000 to $FEFF.

There is a block of memory from $FFO00 to $FFFF that is
very special. In the back of your documentation, find the
data booklet entitled MC6883, and turn to page 17. Here is
atable marked Memory Map Type #0. Look at the left half,
marked ‘“course” (meaning a course breakdown of the
memory map). You can see the layout of the address blocks
I've described so far, and at the very top, a small block
called “MC6809E vectors, SAM control, I/0”. A blowup of
this tiny block is shown on the right side of the figure,
marked “fine”.

Before looking at the detailed map, I want to tell you about
the SAM. You may have heard this term before; I was
mystified the first time I encountered it. You're holding the
SAM’s data booklet now. SAM means “Synchonous
Address Multiplexer”, a mouthful that breaks down to
three simple concepts. It’s synchronous because it is
completely synchronized with the operation of the 6809
processor itself, as well as with the video display, memory,
and so forth. It deals with addresses, its main task. And itis
a multiplexer because it is the traffic cop, sending the
proper addresses to the correct memory blocks. If that
doesn’tinterest you, then let me say that, all because of the
SAM, your Color Computer is a 96K computer.

On to the map. Start from the bottom of the “fine” map.
You'll see three blocks from $FF0O to $FF5F marked 1/0,
meaning input/output. At these addresses — and more on
this later — are found the keyboard, joystick inputs,
cassette input and output, printer input and output,
cassette motor control, various high-resolution color
modes, and other computer control information. Also, the
plug-in disk pack and different peripheral devices use
these input/output addresses. That’s a lot to know about,
but the many capabilities of the Color Computer are found
in these input/output blocks.

Next up on the map is a group of addresses ($FF60 to
$FFBF) which are not defined yet by the manufacturer of
the Synchronous Address Multiplexer, the SAM.

Up from there at address $FFCO begin a unique series of
SAM registers. There was a standard joke among memory
engineers that they’d developed the read/write memory —
where information could be stored and retrieved — and the
read-only memory, where information was permanently
fixed and could only be retrieved — but hadn’t developed
the write-only memory, where information could be stored
but couldn’t be retrieved. Well, the SAM’s got it. Actually,
these memory locations are called write-only registers, and
their job is to perform computer control functions. Your
program keeps track of what’s been done, since these are
infrequently accessed items. Interestingly, what data you
store in these registers is completely irrelevant . . . all that
matters is that you store something there.

@@ﬁ%

Included in the write-only registers are six addresses to set
and reset the eight graphics display modes; 14 addresses to
define the area of memory to be displayed on the screen;
and 12 addresses to define which 32K blockor RAM will be
used in a 96K machine, what processor speed will be used,
how much memory is available, and which memory map
arrangement will be used.

All of these registers are set up by Color BASIC when the
power is turned on, but you can change them at any time.
I've got a little BASIC program to play around with the
video graphics modes. Get it loaded, and then I'll tell you
about it.

Program #14, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program. If
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start of the program and try again. For severe
loading problems, see the Appendix.

REM * USING Al.L VIDEG MODES
REM % PORT $FF2& SELECTS VIDED
FODRX=8TDi1Z8STERS
POKE&HFFEZ, (X OR 4)
REM # ADDRESSES 70O CLEAR MDODE
Cl=&HFFCQ:CE=&HFFCZ:C3=&HFFC4
REM * ADDRESSES TO SET MODE
S1=&HFFC1 :52=&HFFL3:83=&HFFCS
REM (2T I TTI LI S22 3 %3
@ REM # BEGIN CHANGING MODES =
REIM 396 3696 36 96 96 96 36 96 36 36 36 3 96 3 96 9 36 % % 6 39
12 POKEC1, @:POHECE, 2: POKECS3, @
13 GAOsSUR3Q
14 POKES1, @:POKECEZ, @: POKECS, @&
15 GOSUR3Q2
16 POKEC1, @:POKESE, @: POKEC3, @
17 GOSUR3@
18 POKESL, @:POKESE, @: POKECS, @
19 GOSUR3A
Z@ POKEC1, @: POKECE, @: POKESS, @
<l GOSUR3R
‘2 PDKES1, @: POKECE, @: POKESS, @

=g~ o Lo

s
ke

[

23 GOSUER3@

24 POKEC1, @:POKESE, @: POKESS3, 2
25 GOSUR3a

26 POKES1, @: POKESE, @: POKES3, @
27 GOSUB3&

28 NEXT

&3 END

3@ FORN=1TO3@@:NEXT

31 RETURN

LIST lines 1 to 4. Line 2 says “Port $FF22 selects video”.
What’s port $FF22? This is another bit of jargon. The
electronic circuits which allow the 6809 processor in the
Color Computer to use its keyboard, cassette, video, etc.,
are called “peripheral interface adaptors”. There are two
peripheral interface adaptors, or PIAs, built into the

Learning the

Ports

* What are the 1/0
{input/output) addreses?

$FFOR to SFFGF.

Name some of the input/output
devices located at the 1/D
addresses frow $FFOR to $FFOF.
Keyhoard, Joystick inputs,
cassette imput and output,
printer input and output,

cassette wmotor control, sound
output, high-resolution color
wode control, and other computer
control information.

* What does SAN mean?

Synchronous
Multiplexer.

Address

#The G5AM contains memory
locations reserved for control;
what kind of registers are
these?

Write-only registers,

& Nawe some of the purposes of
these write-only registers.

To set or reset eight graphics
display modes; to define the
area of mewory to be displayed
on the screeny to define which
3K block of RAM will be used in
3 96K sachine; to detersine what

processor speed will be used; to
indicate how much wemory is
available; to specify which
mewory map arvangesent is to be

used.
What does SAM mean?

Synchronous
Multiplexer.

+ What does PIA mean?
Peripheral Interface Adaptor.

What is the proper term for
*setting up® a computer device.

Configuring.

6809 o«

PIA, VDG and graphics

% What is the ters for mewory
addresses that open to the
cutside world?

Ports.

% How many ports does the Color
Computer have?

Four,

What are the Color Computer
port addresses?

SFFOR, $FF&2, $FF28 and $FF22.

+ What is the term for "setting
up® a computer device?

Configuring.

What fow PIR addresses
configure the four port
addresses?

$FF01, $FFO3, $FF21 and $FF23,

+ What are the port addresses
configured as?

Input or output.

How does the processor semd or
receive inforsation ({input or
output information) with respect
to the outside world?

By loading or storing data at
the port mewory addresses.

At port $FF22, what is the
purpose of bit 3?

To choose one of two color
sets.

obop 6883
@S5y, N
g 5 §

00 [0

82 Lesson 9

computer, and each is given four memory addresses. The
first PIA, for example, uses addresses $FFOO through
$FF03. These addresses — and I won’t spend a lot of time
on this right now — have two functions. $FF01 and $FF03
— the odd-numbered registers — are called “control
registers”, and are used for setting up (the word for that is
“configuring”’) the PIAs. The even-numbered addresses
$FF00 and $FF02 open to the outside world. They are
called *“ports”.

What this means is that ports $FF00 and $FF02 of the first
PIA are configured by addresses $FF01 and $FF03. They
are configured as input or output. That way the processor
canreceive or send information to the outside world whenit
executes machine-language instructions which load or
store data at those memory addresses.

In this example, the processor can address the second PIA
at $FF20, $FF21, $FF22, and $FF23. The PIA
configuration using $FF21 and $FF23 has already been
done at power-up, so that's not your concern for the
moment. What you need to know is this: in address $FF22
are the video graphics modes. One of the two color sets is
selected by bit 3; graphics mode zero is turned on or off by
bit 4; graphics mode one is turned on or off by bit 5;
graphics mode two is turned on or off by bit 6; and the
alphanumeric or graphic choice is made by bit 7. So each of
the most-signficant 6 bits of address $FF22 has a different
purpose in setting up the video display.

Unless you’ve spent a lot of time cracking your brains over
your BASIC manuals, I probably just dropped another
bucket of unknowns in your lap — the graphics modes. It
turns out that the Color Computer is a chain of “smart”
circuits — the 6809E processor connects to the 6883
synchronous address multiplexer which in turn connects to
the 6847 video display generator and the 6821 peripheral
interface adaptors. Forget all those numbers. Just dig out
your old COLOR BASIC manual — that’s the COLOR
BASIC manual, not the Extended Color one — and turn to
page 256. RUN the program you’ve got in your computer
now, and while it’s running, read pages 256 through 266. If
you've been spoiled by the Extended Color BASIC
graphics modes, then you probably forgot all about these
pages in that old Color BASIC manual. So dig in now.

o847 2] e BASKC
N7 oRPr
vod ¥ (Pia] @ fial §)3

|
|
(—
CJ
]
1
1

65495

M

S

By now I expect that the use of decimal numbers in the
Color BASIC manual obscures rather than illuminates how
all this works. You’d probably like to take a break, but don’t
do it yet. While this information is stiil fresh, I'd like you to
RUN once again the program in the computer.

What you see when you run the program are all the possible
combinations of alphanumeric and graphic modes that can
be created by the combination of the synchronous address
multiplexer (that is, the SAM) and the video display
generator (that is, the VDG). I've already mentioned about
port $FF22 in the memory map. Just to review, bits 3
through 7 of that byte can be used to select one of two color
sets; turn graphic modes one, two and three on or off; and
select between alphanumerics and graphics.

The choice of bits you turn on or off at port $FF22 can then
be combined with the SAM’s video registers to offer
additional possibilities for display. To get at them, though,
you have to understand how the SAM’s peculiar “write-
only” registers work. You still have that BASIC program in
place. LIST lines 5 through 8. I've defined six variables
here. C1, C2 and C3 mean clear 1, clear 2 and clear 3, and
are defined as the three even-numbered addresses $FFCO,
$FFC2 and $FFC4. S1,S2 and S3 mean set 1, set 2, and set
3, and are defined as the three odd-numbered addresses
$FFC1, $FFC3 and $FFCS5. It turns out that writing to an
address, no matter what the data stored, either sets or
resets a condition within the SAM.

Some of you may have used the high-speed mode on your
Color Computer, sometimes called the Vitamin Q poke.
You probably wrote it, POKE65495,0 and to get normal
speed, POKE 65494,0. Whenyou did that POKE, you were
actually executing a Store Accumulator to memory location
$FFD7 for high speed and $FFD6 for normal speed.

Flip to the SAM data booklet (the booklet marked
MC6883), and return to page 17. Locate addresses $FFCO
through $FFCS5. These are the video display modes, the
VDG modes. At the right of the addresses, the mode
combinations are shown in binary. To turn on any of these
modes, the binary data has to be expressed as a trio of
addresses — either the clear address (the even ones) or the
set addresses (the odd ones).

Likewise, locate addresses $FFD6 and $FFD7. They are
part of a group of addresses that affect speed of the
computer. At power up, your computer is in the “slow”
mode. By writing to $FFD7, you set the “A.D.”, or address
dependent, mode. In that mode, your BASIC ROM zipped
along at double speed, and your RAM just stayed the way it
was. Had you poked $FFD8, you would have gone into the
“fast RAM” mode, losing both the video display and the
refresh your memory needs to keep its information.

You don’t need the BASIC program now, so <BREAK>
out of it if it’s still running. I want to show you what happens
when you use the ‘“fast RAM” mode at address $FFDS.

Learning the

Vitamin Q

% What is the purpose of bits 4
through 6?

To select among the graphics
modes.

What is the purpose of bit 7?

To select either alphanumerics
or graphics.

* What does PIA mean?

Peripheral Interface Adaptor,

What is the terw for mesory
addresses which open to the
outside world?

Ports.

What does SPAM mean?

Synchronous Address
Multiplexer.

#What sets or vesets a
condition within the S5AM?

Writing to a SAM address
{register).

* What sets or resets video
display mades?

Writing to the 5AM video display
addresses (registers).

¥ What are the SAM video display
registers?

$FFC8 through SFFCS.

What changes the computer's
processing speed?

Writing to the 5MM clock rate
addresses (registers).

* What are the 5AM clock rate
registers?

$FFDG through $FFDS.

6807 s

Display offset

% What is the normal speed of
the Color Computer ?

-89 Wz (894,886 pulses per
second).

% bheve is the norsal vides
display screen on the Color
Computer (in decimal and hex)?

At 1824 (40408 hex).
What does VDG mean?
Video Display Gemerator.

$hat deterwines the screen
being displayed?

The S5AM display offset addresses
{registers).

* What are the display offset
registers?

$FFLE through $FFD3.

% How many bits of the 16-bhit
address are selected by the
display offset registers?

Seven,

* How many combinations of 7
bits are possible?

i28.

How many display screems are
possible by using the S5AM's
display offset addressing
technigue?

128,

How do you create a display
offset address?

By writing to the SAM display
of fset registers.

How do you create the offset
address 0PO0099?

By writing to all the

even—numbered S5AM display offset
addresses (registers).

84 Lesson 9

$FFDQ is 65497 decimal. So type POKE 65497,0 and hit
<ENTER>. POKE 65497,0.

Screen freaked out, right? Hit your Reset button on the
back right to get back your screen. Whether or not the
program is still intact depends, for technical reasons, on
whether you have a 16K, 32K or 64K machine.

There’s some more to find out about the SAM, so I have
another program for you.

Program #15, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program. If
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start and try again. For severe loading problems,
see the Appendix.

i CLS
& PRINT" REDIRECTING THE VIDEO DISOLAY":PRINT

RS,

3 CO=8HFFCE:C1=&HFFCB:CE=&HFFCA:;CI3=/HFFLCC: C4=& W FLE :CS=&HFFDQ: CE

=&HFFDZ

4 B@=&HFFC7:81=&HFFC9:S2=&HFFCR:53=8HFFLD: S4=kHFFCF : SS5=&HFFD1 : 86

=&HFFD3

S INPUT"THE NORMAL SCREEN IS LOCATED AT $Q4@@ TO $aSFF.

ALLOWS THE SCREEN TD POINT TD ANY PLACEIN MEMORY.
8 SCREENSIN ALL.
EN" ;1A%

& A=VAL (A%) : IFA(ADRAY 127 THENCLS : GOTOS

7 EB&=FIX(A/64)

8 ES=FIX((A-(B&*E4)) /32)

D E4=FIX{ (A~ (BE*E4) ~ (H5*32)) /16)

12 B3=FIX ((A~(BE*64) — (ES*3E) ~ (B4*16)) /8)

11 BE=FIX{{A~ (BE*64) — (ES#3Z) — (B4#16) ~ (BEIHB)) /4)

12 BI=FIX{({A-(B6#64) ~ (B5*32) —(B4*16) — (R3#8) - (BE*4)) /)
13 B@2=FIX (A~ (BE*64) -~ (BI3*#32) - (B4*16) — (B3%8) — (RE%*4) — (R1%2))

14 IFRO@=@QTHENPOKEC®@, AEL.SEPOKESR, @
13 IFR1=@THENPOKEC1, QELSEPOKES1, @
1& IFRE=@QTHENPOKECZ, @ELSEPOKESE, @
17 IFB3=@THENPOKECS3, QELSEPOKESS, @
18 IFE4=@THENPOKEC4, QELSEPOKES4, &
13 IFBES=0THENPOKECS, QELSEPDKESS, @
2@ IFB6=@THENPOKECSE, QEL.SEPOKESE, @
1 FORN=1TOZ@@@:NEXT

2 BOT0OL

The object of this program is to manipulate the SAM
“display offset” registers. This nifty technique makes it
possible to display 128 entirely different screens of
information, each 512 (hex $200) bytes long.

RUN this program, and enter 2 in response to the prompt.
There is a pause, and the cursoris back. Of the 128 possible
screens, the one you normally look at the screen #2. Now
enter 0. Aha. A screen full of garbage and wiggly characters
appears before you. Try that again; enter 0. Screen #0 is
what you see, and screen #0 reveals pages $00 and $01 of
your memory. Remember the Direct Page register? The
Color Computer’s BASIC sets the DP register to $00,

meaning what you're seeing is all the down-and-dirty work’

BASIC does to count, calculate, delay, and so on.

Now I'll show you what’s happening there. Turn once again
to page 17 of the SAM data booklet, where the detailed

THE Sm
THERE ARE iz
ENTER A NUMBER FROM @ TO 127 7O DISPLAY A SCRE

memory map is shown. Addresses $FFC6 to $FFD3 are
called a display offset value, and a strange formula is given,
reading “Address of upper-left-most display element =
$0000 + (1/2K * offset)”. Obscurity won’t triumph, I'll tell
you. What this means is that you can display any area of
memory directly on the screen, in even 512-byte blocks.

Addresses $FFC6 to $FFD3 are those write-only SAM
registers again, used here to create the most-significant 7
bits of an address. Writing to the even-numbered registers
starting with $FFC6 clears bits to zero; writing to the odd-
numbered registers sets bits to one. So if you store
information in all the even-numbered registers, you create
the binary number 0000 000 . . . 7 bits long. If you store
information in all the even-numbered registers except
$FFC8, but store information inthe odd-numbered register
$FFC9, and you create the binary number 0000010. Those
are the most significant seven bits of addresses 0000 0100
0000 0000 through 0000 0101 1111 1111, Those binary
addresses translate into $0400 to $05FF — the address of
the normal video screen.

That's all I have for you this time. I would like you to LIST
this program, and get an idea of how to manipulate the
addresses. Take a break, play with the program, and then
come back for the next session; you’ll be translating these
concepts into an assembly-language subroutine.

To review: the Color Computer is more than a smart 6809
processor, and so effective programming on this machine
requires knowing the rest of the smart devices inside it.
These devices include a video display generator (VDG) to
provide alphanumeric and graphic displays in several
colors; a synchronous address multiplexer (SAM) to
coordinate and synchronize events involving input/output,
display, and memory addressing; and two peripheral
interface adapters (PIAs) to provide input and output for
keyboard, cassette, printer, video, sound, and other
computer control functions.

These smart devices all have control signals which are
connected into the memory map and given specific
addresses. By storing information at these addresses, your
programs can have control of all the computer’s
functions.

Please review this lesson, and familiarize yourself with the
programming aspects presented in the data booklets for
the M(C6883 SAM, the MC6847 VDG, and the MC6821
PIA.

After you've finished trying out and examining this
program, there’s one more at the end of the lesson. Load,
LIST and RUN it. It should give you some ideas.

Summary

What are the even—numbered
display offset registers?

SFFCH, SFFCB, OFFOR, $FFLL,
SFFCE, $FFD@ and $FFDR,

How do you create the display
offset address 11111117

By writing te all the
odd-nusbered SAM display offset
registers.

¢ ihat are the odd-nusbered SAM
display offset registers?

SFFC7, $FFC9, $FFCB,
SFFCF, $FFDI and $FFD3.

* How do you create the diplay
offset address 81181187

By writing to a combination of
odd and even addresses: $FFCH,
$FFC9, SFFCB, SFFCC, $FFCF,
$FFDI and $FFD2,

What is the address of the
first byte displayed on the
screen with the offset address
pliei1e?

The first byte {the
upper—left-most byte) displayed
is $6C08.

What does VDG mean?

Video Display Generator.

* What does PIR mean?

Peripheral Interface Adaptor.

& What does SAM mean?

Synchronous Address

Multiplexer.

What is located in the lower
half of the Color Computer's
memory map (from SO0 to
$7TFFF)?

Read/write memory (random-access
memory), or RAM.

Learning the 6809 85

Program #16

ihat is located froe $0008 to
$9FFF?
Program #16, a BASIC program. Turn on the power of your
) Extended Color BASIC computer. When the cursor appears,
Extended Color BASIC in type CLOAD and press ENTER. The computer will search (S)
read-only mewory (ROM). and find (F). When the cursor reappears, LIST this program. if
the program is not similar to the listing, or if an 1/0 error occurs,
+ What is located frow $A88@ to rewind to the start of the program and try again. For severe
SBFFF? loading problems, see the Appendix.
Color BASIC in read-only wewory
(ROM) ., - . e e e
1 CLS:CLEARIQQ. 16592 PELEARS 1 X=& Q40
o GOSUR4Z:BOSUERSE : GOSURYS
* What is located from (082 to 3 BOSURSS :GDSURBE : GOBLEIT
SFEFF? 4 GOSUEGS:GOSUESE : GOBUET4 : GOSURID
5 GOSUR76: GOSURBE : GUSURD4 : BOBURIT
. A € GOSURBE:GOSURST
Nothing wunless a cariridge 7 GOSUBED4:GOSUE9D
read-only memory (ROM) pack is &8 BOSURI7:GOSUETS
plugged in. 3 DATA B7,FF,C7,E7,F7,C9, B7,FF, CA, B7, FF, CC, 39
i@ DATA B7,FF,C&,RB7,FF,C8,R7,FF,CE, E7, FF, CC, 39
. 11 DATA BY7.FF,C7,EB7,FF,068,H7,FF,CR, 57, FF,CC, 33
¥ What is located from $FFOR to Z DATA E7,FF.C6,R7,FF,C9,R7,FF,CR, B7,FF,CC, 39
$FFFF? 13 DATR BR7,FF,C7,E7,FF,09,R7,FF,CE, B7,FF,CC, 33

14 DATA E7,FF,C&,E7,FF,C8, K7, FF,CA, K7, FF, CD, 39
1S DATA B7,FF,C7,RE7,FF,C8,E7,7F,CA, k7, FF,CD, 33
MCEBB3E vectors, S comtrol, | Copyo16293 TO 16383:READAS:A=VAL (" &H"+A%) 1 DOKEX, £ NEXT
and 1/0. 17 DEFUSR1=16293
18 DEFUSRE=16306
* What do you call the 13 DEFUSR3=16319
description of how the oo DEFUSRA=I63SS
computer's designers have DEFUSR6=16358
arvanged its wewory? DEFUSR7=16371
FORA=1TO4@
GOSUE1@@ : GOSUE 128
GOSUE1@1 : GOSUE128
GOSUE1@& s GOSUE128
GOSUE103 : GOSUE128
NEXT
FORA=1TDZ@
GOSUE1@3 : GOSUE128
GOSUE1@4 : GOSUR1 @A
33 NEXT
34 FDRA=1TOZ@
35 GOSUB1®4:GOSURIQ8
36 GOSUE1@5:G0SUR108
37 NEXT
38 FORA=1TOZ@
35 GOSUE1@S:GOSUE188
40 GDSUE1@6:GOSUE128
41 NEXT
42 GOTD24
43 REM
44 PRINTEG, "* * * * * * * * "
45 PRINTSTRINGS (31,32) "%";
46 PRINT:PRINT:PRINT %"
47 PRINTSTRING® (31, 32) "%";
48 PRINT:PRINT:zPRINT"*"
49 PRINTSTRING® (31, 32) "#";
S@ PRINT:PRINT s PRINT"#"
S1 PRINTSTRINGS (31,32) "%y
S& PRINTSTRINGS (32, 32) ;
53 PRINTY = #* * * * * * * Mz
S4 RETURN
55 PRINTE@," + * * * * * * *4
S6 PRINT:PRINTSTRINGS (31, 32) "%";
S7 PRINT"#*":PRINT:PRINT
S8 PRINTSTRING$(31,32) "%"3
S5 PRINT"*":PRINT:PRINT
6@ PRINTSTRINGS (31,32) "%"3

The memory map.

O S OUD~ND U LR -

[CSIRN IS CS T O (U I AT SO O O WO SO]

86 Lesson 9

61

&z
&3
&4
65
&6
&7
68
69
7@&
71

7e
73
74
75
76
77
78
79
8@
a1

8z

33

ETU
iz
1@l
1@z
1@3
124
185
126
1@7
ia8

Program #16

PRINT"*" :PRINT : PRINT
PRINTSTRING® (31, 3&) " %"

PRINT" * * * * * * * M
RETURN

PRINTEZ, " * * * * * * * *
PRINT:zRRINT %"

PRINTSTRING® (31, 32) "%,

PRINT: PRINT:PRINT " %"
PRINTSTRING$ (31, 32) "%

PRINT:PRINT: PRINT" %"
PRINTSTRING$ (31, 32) "%";
PRINT:PRINT:PRINT " %"

PRINT" * * * * * * * "
POKEL133S, 126

RETURN

PRINTER, v * * * * * * * *" g
PRINT" %" :PRINT:PRINT
PRINTSETRING® (31, 32) "%y
PRINT"*" : PRINT: PRINT
PRINTSTRING$ (31, 33) %" ;

PRINT"*#" :PRINT : PRINT
PRINTSTRING$ (31, 32) "%

PRINT"”#" : PRINT

PRINT™ * * * * * * *" 1 : POKEL1S3S, 96
RETURN

PRINTBEES, "the message can be made:
PRINT®132," TO FLICKER AND FLASH";
PRINT®196, STRING$ (&3, 191)

PRINTEZEQ, " GREEN ((";
PRINTEEZ9Z, " MOUNTRIN®
PRINTE3Z4, " >) MICRO";
PRINT@388, STRINGS (23, 191) §

RETURN

PRINT®196, STRINGS (23, 2@7) ;
PRINT®388, STRINGS (23, 207) 3

RETURN

PRINT®13Z," TO flicker AND flash':
RETURN

X=X+&H2@@ : Y=&H@4@@: FORG=X TO X+S512:POKEQR, PEEK (Y) :Y=Y+1:NEXT:R

RN

M=USR1 (@) : RETURN
M=USRZ (@) : RETURN
M=USR3 () : RETURN
M=USR4 (@) : RETURN
M=USRS (@) : RETURN
M=UGR6 (@) : RETURN
M=USR7 (@) : RETURN
FORN=1TOS@@: NEXT: RETURN
FORN=1TO4 :NEXT : RETURN

87

88 Lesson 9

