Hello again. Now that you have a firm grounding in using
the editor/assembler, I've got to talk about some things
that don’t make me very happy. Those things make up the
jargon of microprocessor programming. It’s struck me that
the major barrier to programming in assembly language is
the terminology. The concepts themselves are simple —
sometimes far too simple and endlessly tedious for fun, but
simple nevertheless. But that simplicity also derives out of
the arbitrariness of their origins.

I don’t want to sound philosophical, but I've often been
asked the question “why”. Why “load” and “store” instead
of something like “input data” and “output data™? Why a
clumsy sounding word like “immediate”? How did the
binary values get chosen for the instructions? The answers
go back to the early days of computers and processors. In
the same way that a “word of eight binary digits” became a
“word of eight bits” and that in turn became known simply
as a “byte”, many of the terms involved in assembly
programming are just arbitrary, and sometimes tongue-in-
cheek, choices that stuck. Some were chosen because the
alternatives are worse . . . “load immediate”, for example.
“Load absolute” implies. a positive number so that’s out;
saying “load this number” or “load what’s next” sound too
silly for programming terms, even though a number sign
actually precedes the operand and it is what’s next.

The jargon can get overwhelming. If that weren’t so, you
probably wouldn’t be listening to me now. It’s not the
programming that’s hard; it’s learning the language, from
the descriptive terms through the programming actions.
Yet I believe jargon is really essential to facilitating
communication. .. so long as you know the jargon. A friend
of mine once wrote that we're not intimidated by admitting,
in pure, modern jargon, “I took a 747 non-stop”; we
wouldn’t think of saying “I flew inside a big silver bird who
never paused to eat or drink.”

There’s truth in that comment; in the earlier lessons, some
of you probably got tired hearing me say “American

This lesson begins the first of
two lessons on the critical
concest of addressing wodes.
The term sounds dry, the
learning isn't especially fun,
and the jargon is tryinp. Yet
addressing wodes pive the 6809
processor its power. Before you
begin, be sure you know the
basic terminology presented in
the previous lessons, and how to
use EDTASH+.

¥ What does ASCII mean?

fmerican Standard Code for
Information Interchange.

that is the term for an
accumulator obtaining
information from wmemory?

Loading.
tWhat is the term for an

accumulator placing information
in memory?

Storing.

tWhat is the term for ome
register placing inforsation in
another register?

Transferring.

& What is & word of eipht binary
digits?

A byte.

Learning the 6809 45

Addressing modes

% What is an addressing mode?
An addressinp wode is how the
sachine language oropram gels

its information.

% In the 6809, what is the size
of the data bus?

The data bus is 8 bils wide.

% In the 6889, what is the size
of the address bus?

The address bus is 16 bits
wide.

% When does a memwory cell appear
“live"?

When it receives its particular
16-bit binary number from the

oroLessor,

% Hw is the 16-bit binary
nusber sent by the processor?

By sending it on the address
bus.

t How does the wewory respond
when it receives iits address
from the processor?

By sending or receiving data.

How is data sent or received?

Along the data bus.

What is the size of the 688F's
data bus?

The 60889 data bus is 8 bits
wide.

What is an addressing mode?
An addressing mode is how the
machine language program pets

its information.

* Where does the processor get
its data?

From memory.

46 Lesson 6

Standard Code for Information Interchange”. You knew I
meant ASCII, I knew I meant ASCII, so why didn’t I say so?
I wanted you to know intuitively that this was a code for the
interchange of information, not just letters.

In a similar way, I was mystified by hockey terminology.
Here were tens of thousands of people understanding the
announcer’s every phrase, understanding the motion of the
puck as if it were their own heartbeats. I ate some popcorn,
velled a little, but mostly read the advertisements on the
sideboards. The game began to take on multiple levels of
excitement only when I began to understand its
language.

There are also are those who consciously attempt to alter a
language to simplify it, even to the point of creating new
languages in the process. BASIC was one of the successes,
Esperanto was one of the failures. The contemporary
Russian alphabet was a success, Chicago school of spelling
was a failure. I have an example relevant to this course. The
creators of the Z80 thought “load” and “store” were really
just directional variants of one concept, so they decided all
such actions would be called “loads”. That decision, while
advantageous for learning the Z80 processor, stands in the
way of someone being fluent on several microprocessors. It
has made the Z80 dialect different from the 6809 dialect,
where those variants were even further refined into
“loads”, “stores”, and “transfers’.

P'm not stalling here, I'm just trying to prepare you for this
lesson. The terms I am going to introduce all have specific
meanings, and some are quite elegant summaries of
complicated concepts. You already know one of them —
the indexed addressing mode. There’s alotlike that coming
up, so take your time; don’t rush. Review when you need to.
You hired me to do this job, after all, and I'll patiently re-
explain as often as you like.

The topic is addressing modes. That’s how the processor
obtains the data it needs to complete a given instruction.
For this topic, I would like you to follow along with me in the
documentation; these things are often easier to see than to
say, especially when it comes to mnemonics. You'll also
need to open your MC8809E data booklet to page 15, and
have a marker on page 28.

While you’re finding your place, and before actually
discussing addressing modes, I'd like to recap the concept
of addressing itself. The 6809 microprocessor has an 8-bit
data bus and a 16-bit address bus. This means that it has 24
electrical connections to an external line of memory cells. A
memory cell in this line is activated when it receives its
particular 16-bit binary number from the processor on the
address bus. Each memory cell is electrically connected in
such a way that it — and only it — can respond to that
‘binary address. When it responds, data is sent from or
received by the 6809 along the 8-bit data bus. 6809 sends

the address, memory responds by sending or receiving the
data.

You don’t need to know much about this electrical process;
for programming purposes, you take it on faith that the
machine’s designers have organized the conhections
properly so that when your program wants information
from memory location $1234, for example, memory
location $1234 will respond appropriately and provide
your program with that information. Later you’ll learn a
little more about dealing with computer input and output,
for which a touch of electronics will enter into the
discussion.

As for addressing, you know now that the processor takes
both its program and its data from memory, and stores its
data in memory. Up to this point, I've presented concrete
examples of specific memory uses — to store and execute
the opcodes and operands of a program, and to store a table
of data. I don’t feel that learning through concrete example
alone will broaden your programming abilities, so it’s on to
the discussion of the addressing modes. If at any point you
get lost in the jargon or feel shaky about this, remember:
AN ADDRESSING MODE IS HOW THE MACHINE-
LANGUAGE PROGRAM GETS ITS INFORMATION.

L.ook at page 15 in the MCG809E data booklet. As noted,
there are seven major categories of addressing modes in
the 6809: inherent, register, immediate, extended, direct,
indexed, and relative. The next two lessons will cover all
seven modes; I'll save for later the three variants called
extended indirect, indexed indirect, and program counter
relative. Throughout this discussion, please remember
that “opcode” means the machine-language instruction,
and that “operand” means its data.

Inherent Addressing

Inherent addressing is the simplest mode. In this mode, all
the information needed to complete the processor
instruction is already present in the instruction itself. In
other words, the address of the data needed to complete
the instruction is inherent in the address of the
instruction’s opcode, which the processor’s already got.
You've used two of these inherent instructions up to this
point: Clear A Accumulator (mnemonic CLRA, hex code 4F)
and Return from Subroutine (RTS, $39), both of which are
inherent addressing. They have all they need to get the job
done. Other examples of this mode are Multiply A
Accumulator times B Accumulator (MUL, $3D). There’s
also Complement A Accumulator — that is, turn all zero
bits to one, and all one bits to zero (mnemonic COMA, $43),
and even No Operation (N-O-P or NOP, $12), which does
nothing but waste time. If this last one sounds funny to you,
you’ll later discover how important it can be to waste time,
since machine language actually moves too fast for some
programming.

Learning the O8OF

Inherent addressing

% ghere does the orocessor pet
its program?

From memory.

* Hw does the processor
distinguish program from data?

By the context.
tWhat is the term for how a
machine language orogras pets
its information?

fin addressing mode.

+ What is the ters for a machine
language instruction”

fAn opcode.

¢ What is the term for an
opcode's data?

fn operand.

What addressing mode includes
the information necessary ic
complete the instruction as part
of the instruction itselé”

Inherent addressing.

Bive examples of inhevrent

addressing.

Any of the following will do
{this isn't a complete list):

CLRA, CLRB, RYS, Mk, COMWR,
COMB, MNOP, ASLA, AGLE, ASRA,
ASRB, DECA, DECB, INCR, INC,
LSLA, LSLB, LSRA, LSRB, NEGA,

NEGB, ROLA, ROLB, RORA, 30RB,
TSTA, TSTE.

% What is inherent addressing?

Ivherent addressino is an
addressing mode in which the
information needed to complete
an instryction is part of the
instruction itself.

47

Register & Immediate addressing

® What is repister addressing?

Register addressing is an
addressing mode in which the
information needed by the
prograg is woved from one
register to another.

* Give two examples of repister
addressing.

TFR and EXB. PSH and PUL can be
considered repister addressing.

¥ What addressing mode invelves
movement of data from register
to register?

Register addressing.

What addressing mode finds the
data at the address immediately
following the instruciion
itself?

Immediate addressing,

% Bive examples of immediate
addressing (make up operands for
your examples).

Any of these will do: LDX
#3008, SUBB #341, CMPX 440800,
LDA #$12, LDY #$1234, Cmpy
#CCCC, etc,

* What is imsediate addressing?

fin addressing mode in which the
data to be used is found at the
address imeediately following
the instruction itself, in
program order,

¥ What is extended addressing?

fn addressing mode in which the
two bytes following the oprode
are the address of the data to
be used to complete the
instruction.

In the instruction LDX $3456,
where is the data?

The data is found at address
$3436.

48 Lesson 6

Register Addressing

The second mode is Register Addressing. In this case, the
information needed by the program is transferred from one
register to another. For example, the familiar Transfer
Value from A Accumulator to B Accumulator (TFR A,B) is
Register Addressing. This instruction is two bytes, the
opcode meaning “‘transfer from register to register” ($1F)
and the operand — called a “postbyte” — identifying which
goes where ($89 for transferring A to B). Another example
of register addressing that you have used is Push Y and Pull
Y ($34 $20 and $35 $20). New examples include Exchange
Registers (two bytes with an opcode of $1E), and all the
other Push and Pull instructions (opcodes $34 and $35,
respectively).

Don’t be confused by the MC6809E data booklet; Register
Addressing is easy. The data booklet first suggests that
Register Addressing can be thought of as either distinct
from or the same as Inherent Addressing. I leave that up to
you, because the MC6809E data booklet can’t make up its
mind, either. The booklet clearly distinguishes between
Register and Inherent Addressing on page 15, but calls
them both “Inherent” on pages 28 and 29. To assist in the
confusion, it even calls one group “Immediate” on page 31!
I prefer to consider Register Addressing as distinct from
Inherent Addressing. The opcode is all the information in
the Inherent mode, but in Register Addressing, the data
necessary to complete the instruction is described by the
postbyte. If I've just confused you, then you may, as the
judge says, disregard the previous remarks.

To recap: Inherent Addressing is a mode in which the
address of the operand also addresses the data needed to
complete the instruction, since the data is an inherent part
of the instruction itself. Register Addressing is similar to
Inherent addressing, and often includes a second byte
known as a postbyte to furnish additional information
needed to complete the instruction. Inherent and Register
Addressing include Clearing, Incrementing, Decrementing
and other internal single-register commands; Exchanging,
Transfering and other register-to-register commands;
Stack Pushes and Pulls; Subroutine Returns; and one-of-a-
kind, specialized arithmetic functions such as Multiply,
Sign Exchange, and Add-B-Register-to-X-Register.

If you wish, review Inherent and Register Addressing in
your documentation. For review, turn the tape off now.

Immediate Addressing

Immediate Addressing is very transparent. The data to be
used is found at the address immediately following the
instruction itself, in program order. Among examples you
have used already are Load X Register with value $3000
(written LDX #$3000), and Subtract the value $41 from B
Accumulator (written SUBB #$41), and Compare X
Register with $0800 (written CMPX #$0800). Other

examples include such logical instructions as AND A
Accumulator with an immediate value, OR B Accumulator
with an immediate value, Exclusive OR, and so forth;
arithmetic such as ADD A Accumulator and SUBtract A
Accumulator; and the now-familiar Load A, Load B, Load
X, Load Y, etc., with an immediate value. The mnemonic
notation for Immediate Addressing always includes the
number sign in front of the operand, which tells the editor,
“use this data!”

Extended Addressing

The word “Extended” implies reaching out, and Extended
Addressing is just that. In Extended Addressing, the
information following the opcode (that is, following the
machine-language instruction itself) is not the data. What
follows the opcode is the address in memory where the data
can be found, rather than the actual data to be used. Here’s
an example. You have used LDX #$3000, which meant Load
X with the immediate value $3000. In Extended
Addressing, the notation is LDX $3000. Very similar, but
with an entirely different meaning; glance at the
documentation so you can see what I'm describing. LDX
#$3000 is immediate addressing; LDX $3000 does not
contain the number sign in front of the operand. That
means that $3000 is not the data, but is the address in
memory where the processor will find the data to be loaded
into X.

Did a question come tomind? How canthe 16-bit X register
load the 8-bit data at address $3000? Since the data at
address $3000 is only an 8-bit word, and since the X
register requires 16 bits, the instruction decoder sees to it
that the process is completed correctly. The information
loaded into X isinfact all 16 bits. The first byte comes from
the address specified by the operand (in this case $3000),
and the second byte comes from the next address (in this
case $3001), in order.

Extended addressing is used for both 8- and 16-bit
registers. If the command were LDA $3000, then, the
instruction decoder would make sure the 8-bit value at
$3000 was loaded into the 8-bit A Accumulator.

Here are two concrete examples:

® Theinstructionis LDX$1234. Address $1234 contains
$AB, and address $1235 contains $FF. After executing the
instruction LDX $1234, the X register will contain the value
$ABFF.

® The instruction is LDB $8888. Address $8888
contains $190. After executing the instruction LDB $8888,
the B Accumulator will contain the value $10.

In all this, the 6809 processor’s task is to be smart enough
to place the information found at the specified memory
location into the correct registers, making sure the number

Learning the

Extended addressing

What kind of addressing mode
is LDX $34367

Extended addressing.

In the instruction LDX #$3456,
where is the data?

The data is ismediately
following the instruction; that
is, the data is $3436.

What kind of addressing mode
is LDX #$3456?

Immediate addressing.

* What kimd of addressing wmode
is LDA $1234?

Extended addressing.

t The B repister contains $41;
the A register contains $00;
memory location $1111 contains
$45. What are the contents of
the A accumulator after each of
the fllowing instructions are
executed?
LDR 849
LDA $1111
TFR B,A

$49; $45; $41

& What addressing modes are LDA
#3495, LDA $1111 and TFR B,A?

Immediate, extended and register
addressing.

% What is an addressing mode?

How the machine language program
gets its information.

What ASCII characters are
represented by 649, $43 anc
$417

I, Eand A

6809 w

Direct addressing

* What is direct addressing?

Direct addressing is an
addressing mode where the direct
pape register and the value
following the opcode are
cosbined to forw an address. At

that address is found the data
to complete the instruction.

& The DP repister is set to $CC
amd the instruction LDA ($80.
Where is the data?

At address $CCBO.

t The DP repister is set to $88
and the instruction is LDA ($CC.
dhere is the data?

At address $88CC,

*# For each of the following
examples, identify the
addressing mode, and tell
specifically where the data is
found. Assume the direct page
register is set to $AG,

¥ LDA #%4]

Imediate; following the oprode
LDA.

LDX $3456

Extended; at addresses $3456 and
$3457 {X needs two bytes).

& CLRA

Inherent; as part of the
instruction.

& STA (s
Direct; at address $AGCC.
* TFR X, Y

Register; as described by the
postbyte,

+ CHPA $789A

Extended; at address $7B94.

50 Lesson 6

of bytes taken from sequential memory locations matches
the size of the register requesting the data.

Direct Addressing

Direct Addressing obtains data for program use with great
speed and memory economy. It depends on the
organization of memory into pages. A “page” is a specific
term in assembly language programming, meaning those
256 contiguous bytes of memory whose most-significant-
byte is in common. For example, page $00 contains the 256
addresses $0000 to $OOFF; page $01 contains addresses
$0100 to $01FF; page $FE contains addresses $FEOO to
$FEFF. The 6809 and other 8-bit processors have a total
256 pages of 256 bytes.

Return to the MC6809E data booklet, and turn to Figure 4
on page 5. That’s the 6809 architecture you've been using.
Up to this point, you have been introduced to all registers in
the 6809 except one: the Direct Page register. Into the
Direct Page register is transferred the most-significant
byte of an address. In earlier processors, the direct page
was fixed (usually to page $00), and consequently there was
no Direct Page register. But the 6809 has this Direct Page
register because its Direct Addressing can be done
anywhere in memory.

So what’s the point? First of all, each instruction using
Direct Addressing takes one less byte of memory than
Immediate or Extended Addressing. Since the most-
significant byte is always ready for use in the Direct Page
register, that byte need not be stored in program memory
as part of the operand. Secondly, since Direct Addressing
fetches one less byte from memory, the instruction can be
completed faster.

The mnemonic notation for Direct Addressing uses the
“less than” sign in front of the operand. For example, with
the Direct Page set to $AA, the instruction LDA <$80 would
load the A accumulator with the value found at memory
location $AA80. Beyond the economy of speed and
memory, however, Direct Addressing is identical in
principle to Extended Addressing: the desired data is not
the operand itself, but at the memory location specified by
the operand.

Examples

To review some examples of immediate, extended and
direct addressing, follow me in your documentation
booklet:

LDX #$1234 isimmediate addressing, loading the value
$1234 into the X register.

LDX $1234 is extended addressing, loading the value
found in memery at addresses $1234 and $1235 into the X
register.

$Pl mears Loap B DIREST...
from where?

LDX <$34 is direct addressing; with the direct page set
to $12, the value found at addresses $1234 and $1235 is
loaded into the X register.

TFR Y,X is register addressing; if the value of the Y
registeris $1234, then the X register will be loaded with the
value $1234,

LDB #$56 is immediate addressing, loading the value
$56 into the B Accumulator.

is extended addressing, loading the value
into the B

LDB $56
found in memory at address $0056
Accumulator.

LDB <$56 isdirect addressing; with the direct page set to
$00, the value found at address $0056 is loaded into the B
Accumulator.

TFR A,B is register addressing; if the value of the A
Accumulatoris $56, then the B Accumulator will be loaded
with the value $56.

CMPY #$789A is immediate addressing, comparing the
value of the Y register with the actual value $789A.

CMPY $789A is extended addressing, comparing the
value of the Y register with the value found in memory at
locations $789A and $789B.

CMPY <$9A is direct addressing; with the Direct Page
register set to $78, the values found at $789A and $7898
are compared with the Y register.

CMPA #$BC is immediate addressing, comparing the
value of the A Accumulator with the actual value $BC.

CMPA $BC is extended addressing, comparing the value
of the A Accumulator with the value found in memory at
$00BC.

CMPA <$BC is direct addressing; with the Direct Page
register set to $00, the value found at $00BC is compared
into the A Accumulator.

To review the major points: Addressing is the manner in
which the program obtains the data it needs. Anopcodeisa
machine language instruction. An operand is the
information needed to complete an instruction.

The Inherent Addressing mode contains only an opcode.
That opcode contains sufficient information to complete
the instruction. Because there is no cperand needed to
provide additional data, the data is inherent in the address
of the instruction.

The Register Addressing mode contains an opcode and
usually a postbyte. The opcode tells the processor which
kind of instruction will be executed, and the postbyte

Learning the

Examples of addressing
DY #6CBA9

Immediate; the two
fallowiag the opoode LDY.

bytes

57X (¢

Direct: at address $A0B@ and
$A0R1 (X is - - bytes).

+ CeB

Inherent: as osrt of the
instruction itself,

What is an addressi=n wde?

fin addressing mode 15 --w the
machine language orograe gets
its inforsation,

t What is inherent addressirg?

Inherent addressing is an
addressing mode in which the
information needed to complete
an instruction is part of the
instruction itself.

& What is register addressing?

Register addressing is an
addressing mode in which the
information needed by the
program is soved from ome
register to another,

t What is immediate addressing?

fin addressing mode in which the
data to be used is found at the

address immediately following
the instruction itself, in
programs order,

t What is extended addressing?

An addressing mode in which the
two bytes following the cpoode
are the address of the data to
be wused to complete the
instruction.

6809 =

Summary
What is direct addressing?

Direct addressing is an
addressing wode where the direct
page register and the valee
following the opcode are
cosbined te fore an adiress. At
that address is found the data
to complete the instruction.

% What are the BHB8Y's 16-bit
registers?

The X and Y registers, the 5 and
U stack pointers, and the PC
{orogras counter). The D
accumulator combines the A and B

accumulators imte a 16-bit
register,
£ What are the 6B29's 8-bit

registers?

The A and B accumelators, the CC
{cordition code) register, and
the DP (direct page) register.

* Where does the processor get
its data?

From semory.

Where does the processor get
its progras?

Froe msesory.

* How does the processor
distinguish progras from data?

By the context.
* ¥hat is the term for how a
wachine language progras gets

its information?

An addressing mode,

52 Lesson 6

defines which registers will be used to complete the
instruction.

The Immediate Addressing mode contains an opcode and
one or two bytes of data. The opcode tells the processor
which kind of instruction te execute, and the bytes of data
are the specific information that is used by the processor to
complete the instruction.

The Extended Addressing mode contains an opcode and
two bytes of data. The opcode tells the processor which
kind of instruction to execute, and the bytes of data are
combined to create an address. Atthat address is found the
data used by the processor to complete the instruction.

The Direct Addressing mode contains an opcode and one
byte of data. The opcode tells the processor which kind of
instruction to execute. The byte of datais used as the least-
signficant-byte of an address, and the processor’s internal
Direct Page register is used as the most-significant byte. At
the resulting adddress is found the data used by the
processor to complete the instruction.

Please don’t consider addressing modes just to be picky
stuff. Virtually all the programming power of the 6809
processor comes from these addressing variants. 1 hope
you will review this lesson several times until each of these
five addressing modes begins to make sense.

The topic is once again addressing modes, those ways in
which the program gets the data it needs to complete a
machine-language instruction.

I've described five modes so far: Inherent Addressing, an
instruction which is essentially complete in itself; Register
Addressing, where the opcode describes the instruction,
and the postbyte indicates which registers are used;
Immediate Addressing, where the necessary data
immediately follows the opcode, within the program;
Extended Addressing, in which the two bytes following the
opcode are used to form the address where the data is
located; and Direct Addressing, in which the one byte
following the opcode is combined with the one-byte
contents of the Direct Page register to form a memory
address where the data can be found.

The remaining modes are Indexed and Relative
Addressing, the topics of this lesson. As an aside, I know
these two lessons are a little dry; I promise to do better
soon, when you get back to hands-on programming.

Actually, you've already done Indexed Addressing. It’s the
most versatile way of getting data to your program, and it’s
quite easy to use. Any apparent complexity arises solely
out of the incredible number of combinations you can make
using this mode, each of which has its own jargon. The one
unequivocal thing you can say about Indexed Addressing is
that the operand in some way identifies the address at
which the processor will locate the data it needs to
complete the instruction. Don’t forget during this that
when I say something like “locate the data”, I'm talking
about loading, storing, comparing, adding, etc. — any
machine language instruction that uses data to do its
work.

In general, Indexed Addressing allows the processor to get
data from memory by calculation. The memory location for
that data is calculated by combining the value of a 16-bit
register with an offset value. The offset can be either an
actual numerical value or the value of an accumulator

Learning the

You wmight be losing patience
with these orogrameed learning
sections. Keep up with them.
Now they bepin to take on more
importance as the nusber of
concepts you need to resember
increases, Starting with the
familiar...

t What is an addeessing mode?

An addressing wode is how the
machire language program gets
its information.

% Name the addressing wodes
represented by these four
instructions: CLRB, LDR #$99,
LDX $@3mA, STB (833

Inherent;
direct.

immediate; extended;

t In inrherent addressing, where

is the data?
As part of the instruction.

In immediate addressing, where
is the data?

Following the opcode in wemory.

* In extended addressing,
is the data?

where

At the address specified by the
opcode.

6807 =

Indexed addressing

¥ In direct addressing, where is
the data?

At the address specified by the
direct page concatenated with
the information following the
oncode,

+ In all cases, where is the
data?

In memory.

In indexed addressing, data is
found at an address in memory.
What two things are necessary to
locate the data?

A 16-bit register and an
offset.

% What are the 16-hit registers
in the 6809 processor?

% ¥, PC {propram counter), §
thardware stack), ard U {user
stack).

What are the three kinds of
offsets used in indexed
addressing?

lerc offset, constant offset,
and register offset.

* Given a vegister and an
offset, how are they used?

The value of the offset is added
to the value of the repister to
calculate the address at which
the data can be found.

If the X register is $3600 and
the P register is %41, where
does the instruction LDB (X fiml
its data?

At address $3088,

What kinmd of addressing is
this?

lero-offset indexed.

54 Lesson 7

register. You've seen the usefulness of this method in that
little code encryption program. The X register was set to
the memory location at the start of the encryption table,
and the offset added to pick your way through the table was
in the B register.

These Indexed Addressing methods are called Zero-Offset
Indexed, Constant-Offset Indexed, and Accumulator-
Offset Indexed. More jargon. Zero-Offset Indexed means
that what you see is what you get; the value in the registeris
the address of the data. Constant-Offset Indexed means
that you’re using a fixed constant — that is, a number other
than zero — to add to the register’s value in order to locate
the data you need. Accumulator-Offset Indexed means
that you can use the A, B, or combined D accumulator to
give you in effect a variable offset. Add that variable offset
to the register's value and you locate the data in
memory.

Indexed Addressing has other features. One of these is
ostentatiously called Auto Increment/Decrement Indexed.
It means that the register you're using to pinpoint a
memory location may be incremented or decremented as
the instruction is performed. As in the memory-to-screen
message program you worked with earlier, this way of using
Indexed Addressing makes transfer of information very
quick and easy, requiring no additional steps to bump the
register values along to the next byte in memory.

Although that program was used to transfer information
just one byte at a time, in another situation you might want
to use two-byte values. Therefore, the auto increment or
decrement can be by either one byte as you've done, or by
two bytes, further increasing the programming flexibility.
For example, if you had stored a table of 16-bit integers,
you would want to step through the table two bytes at a time
to access its information.

The Auto-Increment/Decrement Indexed mode has one
quirk you have to keep in mind. When your memory pointer
register is to be automatically incremented, that
incrementing is done after the rest of the instruction is
completed. But when a pointer register is decremented,
that is done before the instruction is performed. Say that
the value of the A Accumulator is to be stored at the
memory location pointed to by Y. If an auto-increment is
requested, A is first stored at Y, and then Y is incremented.
However, if auto-decrement is desired, Y is first
decremented, then A is stored at Y. This is a little awkward
at first, but you’ll find the programming makes sense to do
that way. More on that later.

Now it’s time to talk about mnemonics, which in this case
will help make sense of Indexed Addressing. Please follow
along with me in your documentation, and also have ready
pages 16 and 17 of your MC6809E data booklet.

The format of the operand for Indexed Addressing is
consistent. The offset is identified, followed by a comma,

and then the pointer register is named. I'm going to
describe some variants on just one possibility, storing the A
Accumulator at memory indexed by X:

Simply to store the A Accumulator at memory indexed by
X, use the zero-offset indexed mode. It is written:

Mnemonic: STA X
Read:
Store A, zero-offset to X
Process:
1. Store A in memory location (X)
2. Change N and Z flags, reset V flag
3. Go on to next instruction

To store A at memory indexed by X plus an offset of $10
bytes, use the constant-offset indexed mode. It is
written:

Mnemonic: STA $19.X
Read:
Store A, constant offset $19 to X
Process:
1. Calculate X + $18
2. Store A in memory location (X + $1§)
3. Change N and Z flags, reset V flag
4. Go on to next instruction

To store A at memory indexed by X, plus an offset of
whatever value is in the B Accumulator, use the
accumulator-offset indexed mode. It is written:

Mnemonic: STA B,X
Read:
Store A, accumulator B offset to X
Process:
1. Calculate X + B
2. Store A in memory location (X + B)
3. Change N and Z flags, reset V flag
4. Go on to next intruction

Indexed examples
If the X repister is $3008 and
the A register is $41, where
does the instruction LDB $9C,X
find its data?

At address $389C.

¥ What kimd of addressing is
this?

Constant-offset indexed.

What is the constant in the
previous example?

$9C is the constant.

% If the X register is $3008 and
the A repister is %41, where
does the instruction LDB A, X
find its data?

At address $3841.

What kind of addressing is
this?

fAccumulator—offset indexed.

What happens when LDA X is
executed?

The A accusulator is loaded with
the value found in wmemwory
indexed by X.

% What happens when LDA X+ is
executed?

The A accumulator is loaded with
the value found in wemory
indexed by X, and then X is
automatically incresented by
one,

* What addressing mode is this?

Auto-increment /decrement indexed
{specifically, auto-increment
accumulator-offset indexed).

What happens when 1DR ,-X is
executed?

The X register is decremented by
one, and then the A accumulator
is loaded with the value in
wemory indexed by the X
register.

Learning the w 55

Indexed examples

¥ What
this?

addressing wode is

Auto-increment /decrement indexed
{specifically, auto—decrement
accumulator-offset indexed).

What addressing wodes are
represented by these three
instructions?

B X

LDB %19,

LDB A

lerc-offset indexed, constant-
offset indexed, and accumu-
lator-offset indexed.

& What
represented
instructions?
LDR X+
LDA $19.%+
LR B, X+

addressing modes are
by these three

lero-offset auto-increment
indexed, constant-offset auto-
increment indexed, accumulator-
offset auto-increment indexed.

* Read the following wnemonics:
£ 51R X

Store f, zero offset to X,
* 5TA 410,

Store A, constant offset $1@ to
X

% STA B, X

Store A, accumulator B offset to
xl

STA X+

Store A, zero offeet to X
incresent X by one.

£ STA ,~X

Decrement ¥ by one;, store A,
zero offset to X.

¥ STA $9AB, -

Decrement X by one, store 4,
constant offset of $9AB to X,

56 Lesson 7

To store A at memory indexed by X, and then to
automatically increment X by one byte, use the zero-offset
auto-increment/decrement indexed mode. It is written
simply:

Mnemonic: STA X+
Read:
Store A, zero offset to X,
increment X by one byte
Process:
1. Store A in memory location (X)
2. Make X = X + 1
3. Change N and Z flags, reset V flag
4. Go on to next instruction

To store A at memory indexed by X, after automatically
decrementing X by one byte, use the zero-offset auto-
increment/decrement indexed mode. It is also simpler to
write than to describe:

Mnemonic: STA X
Read:
Decrement X by one byte, store A,
zero offset to X
Process:
1. Make X =X - 1
2. Store A in memory location (X)
3. Change N and Z flags, reset V flag
4. Go on to next instruction

To store A at memory indexed by X plus an offset of $9AB
bytes, and following that to automatically increment X by
one byte, use the constant-offset auto-increment/
decrement indexed mode. It is written:

Mnemonic: STA $9AB, X+
Read:
Store A, $9AB constant offset to X,
increment X by one byte
Process:
1. Calculate X + $9AB
2. Store A in memory location (X + $9AB)
3. Make X = X + 1
4. Change N and Z flags, reset V flag
5. Go on to next instruction

To store A at memory indexed by X plus an offset of $9AB
bytes, after decrementing X by one byte, use the constant-
offset auto-increment/decrement indexed mode. It is
written:

Mnemonic: STA $94B, - X
Read:
Decrement X by one byte, store A,
$9AB constant offset to X
Process:
1. Make X =X - 1
2. Calculate X + $9AB
3. Store A in memory location (X + $9AB)
4. Change N and Z flags, reset V flag
5. Go on to next instruction

To store A at memory indexed by X plus an offset of ‘

whatever value is in the B accumulator, and to
automatically increment X by two bytes, use the
accumulator-offset auto-increment/decrement mode. It is
written:

Mnemonic: STA B, X++
Read:

Store A, accumulator B offset to X,
increment X by 2 bytes

Process:

1. Calculate X + B

Store A in memory location (X + B)
Make X = X + 2

Change N and Z flags, reset V flag
Go on to next instruction

N B0 N

To store A at memory indexed by X plus an offset of
whatever value is in the B accumulator, after automatically
decrementing X by two bytes, use the accumulator-offset
auto-increment/decrement mode. It looks like this:

Mnemonic: STA B,--X
Read:

Decrement X by 2 bytes, store A,
accumulator B offset to X

Process:

1. Make X =X - 2

2. Calculate X + B

Store A in memory location (X + B)
Change N and Z flags, reset V flag
Go on to next instruction

(B0 - N % }

Indexed examples
¥ STA B, X4+

Store A, accumulator B offset to
X, increment X by two.

¥ STA B,~-X

Decrement X by two bytes, stare
A, accumulator B offset to X,

* What addressing wmodes are
represented by these five
instructions:

CLRR

LD #%12

LDB #1234

LDB (%34

DB $i2,X

Inherent, immediate, extended.
direct, indexed {constant-offset
indexed).

* BRA seans branch aiways. What
kind of addressing does BRA $FD
indicate?

Relative addressing.

* Relative addressing is
relative to what?

The program counter (PL).

+ What does the program counter
{PC) indicate?

The memory address containing
the next instruction the
processor is to act upon.

* What is the relative position
of the PC?

Since “relative” means relative
to the position of the PC, then

the PC is always relative
position 9.
* What determines a number’s

sign (positive or negative) in
binary?

The sign bit.
* Which bit is the sign bit?

The leftmost bit.

Learning the 6&)9 57

Relative addressing

+ When the leftmost bit is a
zero, what is the number's
sign?

Positive.

_ ¥ When the leftmost bit is a
one, what is the number's sign?

Negative,

What is the binary equivalent
of $C77?

$C7 is binary 11080111,

+ Is $C7 positive or negative?
dhy?

Negative, because the leftmost
bit (the sign bit) is a one.

* What is $7C in binary. Is $7C
positive or negative? Mhy?

$7C is @itiliee. It is
positive, because the leftmost
bit (the sign bit) is a zero.

What is the relative position
of the byte in mesory directly
preceding the PC?

Relative position -1, or $FF.

¥ What is the relative position
of the byte in memory directly
following the PC?

Relative position 8i.
¥ Why does $FF mean -1?

Because the leftmost bit (the
sign bit) is a ore.

¥ What does BRA mean?
Branch always.

*+ The opcode for BRA is $20.
When the instruction $28 FE is
executed, what are the relative
positions of opcode BRA and
operand $FE?

Operand $FE is at relative
position $FF (-1) and opcode BRR
is at relative position §#FE
(-2},

58 Lesson 7

As you can see, even storing the accumulator to memory
indexed by X can be done a number of ways. A complete list
would include six more variants that I haven't described;
you’ll have a chance to try these modes in your workbook.
This is a good time to do that if you would like, or just to
take a break and review.

If you've been reviewing this lesson, you probably have an
idea that indexed addressing is very flexible and not nearly
so difficult as the jargon suggests. And, if you've had a
glance at your MC6809E data booklet, then you know
there’s quite a bit more to the subtlety of indexed
addressing. Even so, I would like to leave that topic for now
and turn to Relative Addressing.

Relative Addressing is a good term, one of the best pieces
of jargon you’ll encounter. When Relative Addressing is
employed, the data needed to complete an instruction is
found at a location in memory relative to the present
position of the Program Counter. Specifically, Relative
Addressing is used to identify places in memory to which
the program itself will branch.

To use Relative Addressing, though, you have to know
about signs. I've not mentioned negative numbers in
conjunction with binary or hexadecimal notation, and
that’s because the representation used is different from
that in the decimal system. In the decimal system, of
course, a negative 10 is simply written with a minus sign, -
10. Computer binary numbers are called signed numbers,
because the sign for positive or negative aspect is in fact a
part of the number itself. That’s simpler than it sounds.
Where the sign of a number is unimportant, all the binary
digits have the same meaning, as you've experienced so far.
However, certain programming conditions — Relative
Addressing is just one of them — need to know not only the
length of a branch, but also which direction the branch
goes. That is, how far will the program counter move, and
will it move forward or backward, relative to the current
position in the program?

To sign a number in binary, a unique procedure is used. If
the most signficant bit — that is, the leftmost bit — of the
number in question is zero, then the number is positive; if
the most significant bit is one, then the number is
considered negative. Remember, the sign bit is ignored
except when it is needed.

You have used a signed number in the programming you’ve
done this far (in fact, a negative signed number), but you
probably haven’t noticed. Think back to the program which
moved information from memory to the screen; there was
an instruction that read “Branch if Not Equal” to a part of
the program labeled “LOOP”. At the time, I hustled you
past that point, explaining only about the condition code
register, how that branch would take place if the zero flag
was not set, and that this was sort of like a BASIC GOTO. I
didn’t mention anything about the operand of that branch
instruction.

&-BiT su,uw}
INTESERS
ol 7[7]e] el /]/]

=$op
(n posthve nomber.
decimal /07)

(A 17Te] o]]/]
ER 133
(& negartve nomber,
decimal ~21)

1o~ BAT SNED
INTECERS

el I I Tol7e]elo]7Te] /17 [o]
= 45 =4 i &
(mposrive wamber, decinat 26830)

AaEunnEnCEeREnneE
=4 P >4 | &
(& reqatre. nber, decomal — 8938)

fmq%

—

3

Turn to your documentation. That program is printed with
this text; this time, though, the hex code appears with it.

420 QA1 GRG $4Q00
400@ 8E 2aed eaila LDX H#$Q80a
4Q3 1QBE @402 aR1z2@ LDY #$Q420
40@7 A6 aa Qal13@ LOOP LbA . X+
4a@3 A7 AR Qa1 4@ 8TA s Y+
42@E 8C a8a@ 2a1sSe CMPX #5080
4@2E 26 F7 aaiea BNE Loop
4@1@ 39 Qai7a RTS

Q0@ aa18@ END
222 TOTAL ERRORS
LOOP 47

It should look familiar. Incidentally, the load immediate
instructions in lines 110 and 120, and the zero-offset aute-
increment/decrement indexed instructions in lines 130
and 140 should be particularly understandable this time
round. But my interest is line 160. There’s that Branch if
Not Equal to LOOP. Hex $26 is the opcode for Branch if
Not Equal. $F7 is the operand. How does $F7 describe a
program branch?

The answer is to write it in binary. $F7 translates into 1111
0111. The most-significant bit, bit 7, is a one, meaning (for
Relative Addressing purposes), this is a negative number.
This is a backwards branch. Translated into a decimal
number, this is -9. If you don’t have a decimal/hex
programmier’s calculator, you can refer to the chart at the
end of the documentation, or just count backwards . . . $00
is).$FFis~1.$FEis—2. $FDis-3. $FCis—4.$FBis—b. $FA
is —6. $F9 is —7. $F8 is —8. $F7 is -9. There it is. -9.

The backwards branch is made from the Program
Counter’s present position. Recall that several lessons ago
I said that the Program Counter points to the next
instruction to be executed. Look at the listing again. The
nextinstructionisinline 170, Return from Subroutine. The
Program Counter is pointing to RTS when the Branch on
Not Equal instruction is in progress. This is the starting
point, relative position $00. You’ll be counting backwards
through the second and third columns, containing the
hexadecimal opcodes and operands. Count backwards in
the hex data with your finger. $00 points to Return from
Subroutine, hex code $39. Now start counting. $FF, $FE ...
that’s the beginning of the Branch on Not Equal
instruction. $FD, $FC, $FB. .. that puts you at the beginning
of the Compare X opcode. $FA, $F9 . . . that's the Store A
command. $F8, $F7 ... and there it is, the beginning of the
Load A instruction, right on the line with the label
“LOOP”.

Try it again, just to be certain. Start with the instruction
Return from Subroutine as relative position $00, and count
backwards through the bytes of data. $¥F, $FE. $FD, $FC,
$FB. SFA, $F9. $F8, $F7. The relative branch brings you
back to the label “LOOP”.

There’s another way to do this, actually the way that the
6809 itself does it. The 6809 adds the relative branch
operand to the address pointed to by the Program Counter.

Learning the

Branching

+ When $2@ FE is executed, what
happens to the program counter?

It is moved to relative position
$FE, that is, -2,

What is found at relative
gosition $FE (-2)7

The opcode BRA.

* dhat is the complete

instruction found at relative
position $FE?

Branch always to relative
position -2, BRA $FE, or $20
FE.

Summarize what happens when
the program encounters the
instruction BRA $FE,

The progras branches to relative
position $FE, that is, back to
the instruction BRR $FE, This
is an endless loop.

¥ What is inherent addressing?

Inherent addressing is an
addressing mode in which the
information needed to complete
an instruction is part of the
instruction itself.

* What is register addressing?

fn addressing mode in which the
information needed by the
program is moved from one
register to another.

% What is issediate addressing?

fin addressing mode in which the
data to be used is found af the
address immediately following
the instruction itself, in
progras order.

* What is extended addressing?
fin addressing mode in which the

twe bytes following the oprode
are the address of the data to

be used to complete the
instruction.
6809 9

Long and short relative

% What is direct addressing?

An addressing mode where the
direct page register and the
value following the opcode ave
combined to fors an address, At
that address is found the data
to complete the instruction,

% What is indexed addressing?

An addressing mode in which a
16-bit register and an offset
are combined to produce a 16-bit
result. The 16-bit result is
used as an address; the data is
found at that address.

* What is relative addressing?

fn addressing mode where the
operand is an offset relative to
the current position of the
progras counter. Depending on
the conditions of the relative
instruction, the program will
branch to this relative
position.

% What is the term for how a
machine language program gets

its information?

An addressing mode.

60 Lesson 7

If the relative branch is positive (bit 7 is zero), then that
result becomes the address of the next instruction the
processor will execute. However, if the relative branch
value is negative, the 6809 decrements the most-signicant
byte of the address, and uses that as the address of the next
instruction. In this case, the Program Counter reads $4010
and the relative branch is $F7.

$4p1p
plus §$F7
is $41p7

But $F7 is negative, so the most signficant byte of the
address ($41) is decremented to $40. The result is $4007.
Glance at the listing. $4007 is the address where you will
find the label “LOOP”.

The 6809 has two kinds of Relative Addressing — long and
short. Sofar I've been describing short addressing. In short
addressing, one byte is used to carry the program 127
addresses forward or 128 addresses backward. Long
Relative Addressing uses two bytes, but the principle is the
same. If the most-significant bit is zero, the long branch is
positive; if the most-signficant bit is one, the long branch is
negative. There are two major differences between the
short and long branch. In the one-byte short branch, bit 7 is
the most-significant bit; in the two-byte long branch, bit 15
is the most-significant bit. Also, the short branch can move
only 127 addresses forward or 128 addresses backward;
the long branch can move 32,767 addresses forward or
32,768 addresses backward in memory — that is, through
the entire memory map of the computer. Long branches
offer position independent programming. Remember the
term “position independent”; I'll be talking quite a bit
about that later.

Relative Addressing, then, is unique in that the operand
does not provide either an immediate value or a specific
address to the processor. Rather, it provides a value which
canbe used to calculate a specific address inrelationship to
the present position in the program.

Time to summarize. There are seven major ways your
program can obtain the information it needs. These are
called the addressing modes.

1. The information can be implied by the
instruction itself. This is Inherent Addressing.
CLRA (Clear A Accumulator) is an example of
Inherent Addressing.

2. The information can deal with internal
6809 registers. This is Register Addressing.
TFR XY (Transfer X Register to Y Register) is
an example of Register Addressing.

<xee]
ARV

AT

!NND&.XEED 7
CALLULATE.:

(2% (xfse)

S g |
;«\-‘ e
V23E
%I 98 | 72 |?€’

3. The information can be present immedi-
ately following the instruction itself. This is
Immediate Addressing. LDA #$80 (Load A
Accumulator with the value $80) is an example
of Immediate Addressing.

4. The information can take the form of a
memory address where data can be found. This
is Extended Addressing.

LDX $1234 (Load X Register with the
information at Address $1234) is an example
of Extended Addressing.

5. The information can take the form of the
least-signficant half of a memory address. This
can be combined with the value of the Direct
Page register to locate the information in
memory. This is Direct Addressing. If the
Direct Page register is $50, then LDY <$CC
(Load Y with the information at addresses
$50CC and $50CD) is an example of Direct
Addressing.

6. The information can take the form of a
register value, which, together with an optional
offset, identifies a memory address where data
can be found. This is Indexed Addressing.

LDX D,Y (Load X with the information at
Address Y plus offset D) is an example of
Indexed Addressing.

7. The information can take the form of a
value to add to the Program Counter to
determine a new position for the Program
Counter. This is Relative Addressing. BRA $40
(Branch Always to Program Counter plus $40)
is an example of Relative Addressing.

Each of these modes is unique, and each contributes to the
speed and economy of the 6809 processor. Please review
this lesson and read pages 15 through 17 of your MC6809E
data booklet. I haven’t yet discussed what are called the
Indirect Addressing Modes; if, when you read the data
bogklet, the Indirect modes make sense, then you’re doing
well indeed. If they’re not clear to you, don’t worry; that’s
for later. Once again, please review all the addressing
modes before moving to the next lesson.

Learning the 6809

Summary

61

62 Lesson 7

