I promised to throw you in the swim during that last lesson,
but sorry T had to leave you swimming at the end of it.
Here’s a short review:

The 6809 microprocessor contains several registers. Each
registeris in effect a memory slot inside the processor, but
each register has a uniquely defined task. The A and B
accumulators are 8-bit arithmetic logic units, or ALUs,
capable of performing simple arithmetic and logical
operations. The X and Y registers are 16-bit registers used
mainly to index, that is to point to, addresses within the
processor’s memory range. The PC, the program counter,
points to the memory address containing the next
instruction that the processor is the act upon.

The addressrange of the 6809 runs from $0000 to $FFFF, a
total of 65,536 locations. When the power is turned on, the
processor fetches the information stored in the top two
bytes of memory, concatenates it, and places it in the
program counter. The processor obtains its first
instructions from there, the instruction decoder begins
translating the instructions into actions, and the computing
begins.

As an example of this much of the 6809’s architecture, 1
presented a short program. In that example, the X register
was given the address of — that is, indexed to — the first
character of an ASCII message stored in memory, and the
Y register was indexed to the first display location in video
memory. The A accumulator loaded a value from memory
indexed by X, and stored that value in memory indexed by
Y, causing an ASCII character equivalent to the stored
value to appear on the screen.

Atthe end of thelesson, I had introduced the flags, formally
known as the condition code register, whose purpose is to
provide simple indications about the most recent
instructions executed by the 6809 processor. In this case,
by comparing the value in the X register to a known value,
and subsequently checking the condition codes, it is
possible to determine when the complete message has

Learning the

Machine language oOrogramming
actually begins in this lesson.
You'1l be needing your

editor/assembler EDTASH+ now, so
be sure to have your copy before
beginning this session.

What is the address range of
the 6883 processor, in hex.

0080 to SFFFF

% How many bytes does the 4
accumulator hold?

One byte.

t How wany bytes does the X
repister hold?

Two bytes.

*X and Y are what kind of
registers? Why?

Index registers; because they
index an address in memory.

* What does the program counter
{PC) indicate?

The wemory address containing
the next instruction the
processor is to act upon.

%+ What is the formal name for
the flags?

The cordition codes, or the
condition code register.

6%9 27

Mnemonics

* There is a set of verbal
descriptions of processor
commands; what are these
descriptions called?

Verhal descriptions of processor
vommands are called snemonics.

¥ How is "wremonics”
pronounced?

It is pronounced nuh-MON-ix.
What do snemonics represent?
Processor commands.

* What is the proper name for a
processor command?

f oprocessor comsand 15 an
operation code, or oprode.

#+ One oprocessor command is
written LDX. What does this
mean?

LDX means “lcad X register”.
dhat 15 LDX?

LDX is an oprode meaning “load X
register”.

+ what is STR? MWhat does ETR
represent? What does STR mean?
What action does il cayse?

87R is a mnemonic: it represeris
an opcodey the oocode weans
“store A accumelator”; it causes
ihe contents of the A
accumulator to Dbe stored in
HEBOYY.

+ Describe CHMPX. What 1s it?
What does it represent? What
does it mean? What action deoes
it cause?

LmMpx is a uwnemonicy it
represents an opcode; the oprode
weans “compare X register”; it
causes the value of the X
register to be compared with
another value..

28 Lesson 4

been displayed. [used an example in BASIC to outline the
process, and finished by having you load and examine a
mnemonic source code. Load that program again — it
follows on this tape — and then I'll talk about mnemonics
and source code, and what they mean.

Program #8, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. If the right-hand side of
the program is not similar to the listing. or if an [/0 error occurs,
rewind to the program'’s start and try again. For severe lnading
problems, see the Appendix.

Q100 LDX HEQEDD
Q@11 LDY H$QLQQ
Q1@ LOoP LDA X+
Q@13 5TA LY+

QR 14@ CMPX #$2BQ@
aR15@ EBNE LOOP
Qa16@ RTS

Qa17@a END

We’'ll spend a session learning to use the editor/assembler
alittle later. For the moment, print this listing on the screen
by typing P followed by ENTER. What you see should
almost look familiar from the descriptions of the processor
instructions you've been getting from me.

What you're looking at are mnemonics, somewhat verbal
descriptions of processor commands. I'll read the
commands in the third column. Load X, Load Y, Load A,
Store A, Compare X, Branch if Not Equal, Return from
Subroutine. One more time, just for familiarity. Load X,
L.oad Y, Load A, Store A, Compare X, Branch if Not Equal,
Return from Subroutine. These commands are called
operation codes, or Op Codes.

In the fourth column you'll see the Operands, those values
and indications used by the Op Codes. I'll read the third
and fourth columns together, which provides a complete
description of each 6809 processor instruction in turn.
Here goes.

@ I.ocad X with the immediate value
hexadecimal 0600

® l.oad Y with the immediate value
hexadecimal 0400

® [oad A with the value from memory
indexed by X, and increment X by one

® Store A to the value in memory indexed by
Y, and increment Y by one

Loa@r) X register
STM A Accumulater
@omgre Y reqister
ReTorn from Subrwhm

e (Compare X to the immediate value of
hexadecimal 0800

@ Branch if the result of the previous
computation was not zero, that is, if not equal,
back to the instruction labeled LOOP.

© Return from subroutine. The return is
used here only because this program is a
machine-language subroutine we have used
from BASIC. This RTS gets the processor
back to BASIC.

I've used some new terms. “Immediate” value is one of
them, one which I slipped into the previous lesson.
“Immediate” is a piece of jargon 'm not fond of, butit’s the
formal term meaning “use this actual number”. Inline 100,
that means Load X with the number hex 0600. The number
sign preceding the value is used to indicate an immediate
operand.

The rest of the listing should look fairly straightforward.
The plus signs after X and Y mean automatically increment
those registers by one. There are also ways of incrementing
by two, or decrementing by one or two. Later for that.

But one thing might look peculiar, and that’s the comma
sitting in front of the X and Y in lines 120 and 130. To my
eyes, that comma’s a beautiful thing; it gives me computing
power. Line 120 could have been written another way: LDA
0,X+ . .. which means, Load A with the value in memory
indexed by the X register plus an offset of zero. One more
time. LDA 0,X+. Load A with the value in memory indexed
by the X register plus an offset.

In this program, the offset value is an implied zero. It’s
implied by leaving it out. In effect, the A accumulator gets
its value simply from the memory location indexed by the X
register. If X is $0600, A loads its value from $0600. No
problem.

But that offset can be an astoundingly powerful thing. Most
kids have written letters to friends in code. They mix up the
letters and ever so seriously send the message. Cryptogram
puzzles work that way, too. Using the 6809’s amazing
indexed-offset technique, encoding — and decoding —
that kind of message becomes a snap. I remember making
off with a Scrabble set to write my cryptograms. I would
sort out one alphabet of Scrabble tiles, and then write out
the letters of the alphabet in order on a large sheet of paper.
Then I'd shake up the letters and put them down on my
paper, one at a time. A might be X, B would be L, C would
turn into N, who knows. That would be my code. I would
write my message and carefully code it, letter by letter.

Getapencil and alarge piece of paper. Inone line across the
paper, write the letters of the alphabet in a mixed-up order.
When you've finished that, write, in order, the hex numbers
$00 to $19 above those letters. The letters will be out of

Learning the

Immediate & Offset

What is the name for a machine
instruction?

fn opcode.

+ What is the name for a value
or indication used by an

opcode?

fin operand.

Read the smemonic LDX.
Load X register.

Read the snesonic LDYX #$$8508.

Lload X register with the
immediate value hexadecimal
8cen.

What does immediate mean?

Use the actual value, the value

immediately following the
opcode.
% What symbol is used to

irdicate an imsediate operand?

The nusber sign or crosshatch
i$).

* What symbol 1is wused to
indicate hexadecimal notation.

The dollar sign {$).

Write the wnemonic for "load

the Y vregister with the
immediate value hexadecimal
1234".

LDY #1234

% Write the mmemonic for the
instruction "load the X register
with the immediate value 8"

LDY #@ ar
LDY #0888 or
LDX #50800 or

+ What does the comma indicate
in the mmemonic LDA ,X ?

The comma indicates an offset.

6809 29

Labels, constants and USR

+ What is the offset
mnemonic LDR X 7 uhy?

in the
The offset is zero because it is
not specified.

+ What does the comma indicate
in the mnewonic LDB $43,Y 7

The comma indicates an offset.

What is the offset
snemonic LDB $43,Y ?

in the

The offset is $43.

Write the wmmemonic for the
instruction *load the A
accumulator with mewory imdexed
by X, with an offset of
hexadecimal $9C°.

LDA $3C, X

% What action does the mnemonic
opcode LDY #$CCCC perform?

It loads the X register with the
immediate value hexadecimal
$CCCC,

* What action does the wnemonic
opeode LDR $33,X perfors?

It loads the R accumulator with
the wvalee found at wemory
indexed by X, with an offset of
hexadecimal $33.

You find these instructions:
LDX #$CCCC

LDA 433X

From what wewory location does R
get its data?

$CCFF, that is, $CCCC offset by
$33.
% What is the ASCII value for

the letter A (in hex)?

Uppercase A is $41, lowercase a
i5 $61

Mhat is the ASCII value for
the letter I (in hex)?

Uppercase 1 is $5R, lowercase z
is $6A,

30 Lesson 4

order, but the hex numbers will be in order. Turn this tape
back on when you're finished; turn the tape off now.

Now you've got 26 rearranged letters and 26 hex numbers
in order. Above letter $00 write “X Register”. Below letter
$00 write “CIPHER”. CIPHER is a convenience label that
will identify the start of the coded alphabet. That's “X
Register” above letter $00 and the label “CIPHER” below
letter $00.

And now to the program. The idea here is to be able, givena
value from somewhere, to extract the coded value from the
table and provide it to the user.

Let’s say the value is in ASCII, a normal state of affairs for
these machines. Letter A is ASCIThex 41, leiter Z ishex 5A.
The question is how to get from ASCII values $41 through
$5A to the encrypted values in the table, which are
numbered $00 through $19. There's really no mystery or
wonder to this part. If you subtract $41 from $41, you get
$00. Subtract $41 from $5A, you get $19.

Sothe ASCIIvalues come in from somewhere, vou subtract
$41, and the resulting number is the position of the
encrypted value in the table. You extract the value from
that position, and the encoding is done.

There’s a program to write now, during which I'm going to
introduce some new parts of the 6809 architecture, This
would be a good time to take a break and review what's
been done so far. When you've finished reviewing, open
your Extended Color BASIC manual, and read pages 145,
146, and all except the last paragraph on page 147. Don’t
worry if you don't understand all of it; I'll explain later.

Please read pages 145, 146 and 147 in the Extended Color
BASIC manual. This is the beginning of the chapter called
“Machine Languege Routines™.

[X RecisteR §
$00 B §02
QX N O

3

The program you have to create will accept an ASCII value,
subtract a constant, and use the result to pluck a number
from a table of encrypted letters.

You'll actually be creating a working program, so you need
a jumping off place. BASIC is good. You can transfer a
value from BASIC to machine language; it’s part of the
USR command. In your Extended Color BASIC bock, the
USR function was described. The “argument” they're
talking about is the value transferred to amachine language
program from BASIC, and that will be the ASCII value you
are going to encrypt. Once control is given over to your
machine language program from BASIC, your program
must obtain that ASCII value.

When USR is executed by BASIC, the first step is done for

ALPHA

IELESECRV IS

ASCIL
LETTER. CODE

41

9z
4%
ot
4s
o

CONSTANT TABLE
GFFSET oS ITION

- 1
- 4l
_q,
-
- 4l
- Y

/’ELﬁL"‘_‘

20 PRINT X

(/40 FeRX = | TOI0O

B Az UERGE (%)
§‘|‘0 NEXT

¥

"

USER

Your,

FR BIEP
YouR,

NEXT
IRSTRUCTION

MACHINE
LANGUMLE.
SUBROUTINE-

—/

O

!
Z
4
o

FikeT i) ¢

veT N Fe7Er
\T&E \
STALK

R

LATAT

ARSTOUT

A
e

you. The value is waiting in memory, and part of BASIC’s
own machine language commands are set up for your use.
The Extended Color BASIC manual described this
process of transferring your integer ASCII value by saying,
“Tt’s possible to force the argument to an integer by calling
BASIC’s INTCNV routine from the USR function
(INTCNV = X'B3ED").” I'll tell you what that means. It
means you can transfer an integer from BASIC to a
machine language program by using a part of BASIC found
at address $B3ED. Your program must consider the chunk
of BASIC beginning at $B3ED to be its own subroutine.

Subroutines in machine language are almost identical in
principle tothe GOSUBsin BASIC, except that you have to
know more about them. Primarily, you have to know about
the stack. Return to your MC6809E data booklet, and look
again at Figure 4 on page 5. Notice that below the X and Y
registers are two registers marked User Stack Pointer and
Hardware Stack Pointer.

The stack is one of the best- and worst-named registers in
microprocessor programming. It's well named because it s,
in fact, a stack full of bytes being temporarily stored. You
put things on the stack in first-in, last-out order. Thatis, it’s
like that pile of magazines on your coffee table. The first
magazine you stacked there is the last magazine that gets
taken off the table because everything else is on top. Go
look. I bet you didn’t realize there was still a January 1975
Reader’s Digest underneath all that.

Seriously, the stack is a register which points to a memory
location. The address being pointed to changes as the stack
grows or shrinks. But the stack is badly named because it
works upside-down. It's what’s known as a “push-down”
stack. Every time I push a byte on the stack, the address
decreases by one. It’s like stacking those magazines on the
ceiling. For the moment, just remember first-in, last-out.

The reason you have to know about the stack to use a
subroutine is because it is on the stack where the 6809
processor puts the present address in its PC register — the
program counter — when it jumps to a subroutine. It breaks
the address into two bytes of data, pushes the two-byte
address on the stack, and puts the address of the
subroutine in the program counter. The next instruction, so
far as the program counter knows, is now at the beginning of
the subroutine! It goes along, executing instructions in the
subroutine, until it comes across the command RTS (return
from subroutine). The instruction decoder pulls that
original two-byte address off the stack, reconstructs it, puts
it in the program counter, and presto! you're back where
you left off in the original program.

Some jargon now. This is known as a subroutine call, and its
mnemonic is JSR — jump to subroutine. As [said, it works
just like a BASIC GOSUB, and like BASIC, you can nest
your subroutines — call one from inside another from
inside another. But here’s where the difference shows up.
You don’t have to keep track of much in BASIC — it

Learning the 0

The Stack

& How wmany letters are there in
the alphabet (in hex)?

There are $I1A letters in the
alphabet.
¥ If A is considered letter

nusber $88, what is letter 77
Letter number $19.

If the X register points to a
semory location that contains a
sperial code for letter A
{letter nusber $08), write a
single snesonic commsand to load
the A accumulator with the
special code for letter L.

LDA $19,X

How does BASIC tramsfer a
value to storage for use by a
machine-language prograns?

With the USR comsand.

What is needed with the USR
comwand to transfer a value to
storage for use by a
sachine-language progras?

It needs an argument following
the comsand.

If M is a BASIC variable, and
the value to be transferred is
149, write a USR command to
transfer a value to a
sachine-language program.

¥=USR(159)

* At what mewory location does

BASIC's integer conversion
routine begin?
The integer conversion

subroutine starts at $B3ED.

% What does the wmnemonic JSR
mean?

Jusp to subroutine.

& What register does a Juxp to
subroutine require?

The stack.

31

Pushing and pulling

Why does a jump to subroutine
require the stack?

To store the current position of
the progras counter to use as a
return address.

* What type of stack is found in
the 6889 processor?

A push-down stack; or, a
first-in last-out stack.

% What comsand places the
grogram counter on the stack?

J5R, jump to subroutine.

¥ What command places the
original address back in the
program counter?

RT5, return from subroutine.

¥ What action does the command
JSR $B3ED descibe?

Jump to subroutine at wmemory
location $B3ED.

What is the process of placing
a value on the stack called?

Pushing.

What is the process of t{aking
a value off the stack called?

Pulling.

% What does the program counter
{PC) keep track of?

The next instruction the
processor is going to follow.

At address $1088, a comsand is
gncounterd whose mmewonic is JSR
$B3ED. Upon execution of J3R
$B3ED, what value is pushed on
the stack?

$1083.

How many bytes are pushed onto
the stack whenm JSR $B3ED is
executed?

Two.

32 Lesson 4

“cleans up” for you. But you've got to know where your
machine language stack is, because it’s also used to save
information for later use.

Refer again to the Extended Color BASIC manual, on page
147, entitled “Returning to BASIC from a USR Function”.
It states, “The values of A, B, X and CC registers need not
be preserved by the USR function.” That implies that the
value in the Y register is needed; how do you save it? By
pushing it on the stack, that’s how. Once the two bytes that
make up the 16-bit Y register get pushed on the stack, you
can then modify Y as you wish. Before returning to BASIC,
pull Y from the stack, and off you go.

If you're ahead of me, then you're asking, “which stack?”
The MC6809E data booklet indeed stated that there is
both a User Stack and a Hardware Stack. Subroutine calls
automatically use the Hardware Stack, so that’s a certainty.
For pushing and pulling various values, you might use
either of the remaining stacks. But because of the complex
software in the Color Computer, the User Stack is basically
reserved. For the most part, stay away from it. The
Hardware Stack is what’s left.

Now the mnemonics. To push a value on the Hardware
Stack, the mnemonic is “pushstack” — PSHS. The
operand is the set of registers you wish to push. To push X,
Y, and A, for example, you would pushstack X Y A — PSHS
X,Y,A.

So where are you? You've got an encrypted ASCII alphabet
in a table, you know you have to save the Y register for
BASIC, you know that $B3ED is the address of the integer-
conversion subroutine. Page 149 of the Extended Color
BASIC manual tells you that $B4F4 is the subroutine call
that properly returns an integer value to BASIC. All that’s
left is to write the program. If you need it, now’s the time to
take a break and review.

Now to the program; do it on paper first. The Y register
must be saved, so pushstack Y — write PSHS Y. Now there’s
the matter of getting the value waiting in BASIC. Jump to
the subroutine at $83ED for that. Write JSR $B3ED. The
manual tells you that the value from BASIC is returned in
the D register. What’s that? It’s merely the name for both A
and B 8-bit accumulators used as if they were a single 16-
bit accumulator. Since the value is an ASCII character, it is
only one byte in size, fitting into the B accumulator.

The encryption table has to be identified. Write Load X
with immediate value CIPHER. Write “LDX” and across
from it write “# CIPHER”. The X register is pointing to the
zerceth entry in the encrypted ASCII table.

Remember that $41 has to be subtracted from the ASCII
value to get it into the range $00 to $19. Subtract the
immediate value of $41 from the B register; thatis, subtract
from B immediate value $41. Write SUBE #$41.

u" AT STARY

aY-0'¢
o
Sy N

&

RETUEN
APDRESS

v
FC

Oyl

The magic is next. You know that the B register contains a
value from $00 to $19. You know that X is pointing to the
zeroeth value in the encrypted table. All that’s left of the
hard work is to use that information to find the value you
want from the table. That value is found at the address
indexed by X, plus the offset value found in register B.
Load A with value indexed by X offset by B. Write LDA B, X.
You've got it.

The Extended BASIC manual says that to get the value
back to BASIC, it has to be in the D register — remember
that’s A and B used as one register — and $B4F4 has to be
called. That means the value now in A has to be placed in B,
since the B register is the least significant byte of the D
register. There’s a transfer instruction for that . . . transfer
A to B. Write TFRA,B.

Now A and B contain the same value. You want A to be zero,
so clear it. Write CLRA. It looks like most of the work is
done, so call that routine that gives the value to BASIC.
Write JSR $B4F4. Now get the Y register back (you do
remember you saved the Y register, don’t you). Pullstack Y.
Write PULS Y. And finally, it’s back to BASIC — return
from subroutine. Write RTS.

There’s a tape to load now. When you’re done with that,
take a break.

Program #9, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the program’s start and try again. For severe loading
problems, see the Appendix.

@a12@ CIPHER EQU $3000
20110 DRG $310@
@120 PSHS Y

20132 JBR $E3ED
221 4@ LDX #CIPHER
20152 SUEE #8541
@0162 LDA B, X
a217@ TER A, K
oa18@ CLRA

22190 JSR $E4F 4
QveeR PULS Y

Q0210 RTS

QazER END

Type P#:*, <repeat> and hit <ENTER>. There are just
a few new things in this listing. Line 100 contains the
notation CIPHER EQU $3000. This line tells the editor/
assembler that the label CIPHER is to mean hex 3000. So
whenever it encounters the label CIPHER, the editor/
assembler knows to work with the value $3000. This is
called an “equate”, and it makes life easier for you as a

A+B-D
% Using the previous example,
upon a3 return from subroutine
{RTS), what value is placed into
the program counter (P0)?
$1083,

t Other than JSR, what
instruction type places a value
on the stack?

Push,

+ How many stacks are there in
the 6883?

Two.

% What are the namwes of the two
6889 stacks?

The wuser stack) and the
hardware stack {(5).

+ Which stack do subroutines use
autogatically?

The hardware stack.

* What is the snemonic for the
command to place a value on the
hardware stack?

Pushstack §, or PSHS,

* Write the smemonic for pushing
the X register on the hardwave
stack.

psHS X

* Write the mnemonic for pushing
the A accumulator on the
hardware stack.

PSHS A

Write the mmemonic for pushing
both the A accusulator and X
register on the hardware stack.
PSHS A, X

t What is the wnemonic for
taking a value off the hardware
stack?

Pullstack §, or PLS,

Learning the 6809 33

Assembly

Write the mnemonic for taking
the X register off the hardware
stack.

LS X

& Write the mnemonic for taking

the A asccumulator off the
hardnare stack.
PES A

& Write the snesonic for taking
the B accumulator; X register
and Y register off the hardware
stack.

PULS B, X, Y

If the value of the X register
is $1234 and at address %1008
the program executes JGR $B3ED,
what values would be found on
the stack, from first in to last
in?

First in is $34, then $12, then
$83, then $10.

Using the previous example,
what would be the vesult after
these two instructions:

RTS8
PLS ¥
The main progras would bhe

returned to {($18@3 back in the
progras courter) and Y would bhe
$1234.

The previous example made Y
equal to the value of X. What

other instruction could have
wade Y equal to the value of X?

Transfer X to Y (TFR X,Y)

& What does ORE wean?

ORE weans origin, the first
memory location used in a
snewonic listing.

What does ORG $3FB8 mean?

It means the first wemory

location in a snimonic listing
is $3F08.

34 Lesson 4

programmer. You canremember meaningfullabels instead
of heaps of numbers.

The other new item is in line 110, reading ORG $3100. This
means that the origin, or first address, of your program will
be memory location $3100.

Beyond that and the END statement in line 220, this
program should look exactly like the one you wrote down.
This is the source code for the encryption program -~ the
mnemonic representation of the instructions you want the
6809E processor to follow.

Do a few things mechanically now; I want you to try the
program, but I'm not ready to explain all about the editor/
assembler. Some of that’s for next time. Type A/IM/AO.
I'llrepeatthat. A/IM/AO. Hit <ENTER>. A listing should
be scrolling by, and your star prompt will return. The
editor/assembler has just turned your mnemonic code into
a group and 6809 instructions, and placed them in memory.
Briefly, A means assemble the program; IM means
assemble it into memory, and AQ means absolute origin,
that is, assemble the program exactly where your ORG
statement says to do it.

Now Quit the editor/assembler. Type Q and hit
<ENTER>. You will be in BASIC now, and I have another
short program for you to load.

Program #10, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program. If
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start of the program and try again. For severe
loading problems, see the Appendix.

1@ DEFUSRB=&HI1Q@

2@ X=9@:FORN=8H3QOQ@ TO &H3@19:POKEN, X:X=X—1:NEXT
30 AS=INKEY$:IFA$("A" OR A$) "Z"THENIQ@

4 A=ASC (A%)

5@ B=USR{A)

6@ PRINTCHR® (E) :

7@ GOTO3@

You've listed this program. Line 10 defines your USR
program to be at hex 3100, the origin you used. Line 20
places the letters of the alphabet in reverse order in
memory starting at $3000 — where the #CIPHER
encryption table is supposed to be. Line 30 is an ordinary
INKEYS$ that picks off an uppercase character as you type
it. Line 40 gets the ASCII value of the letter. So far,
everything is BASIC you probably know, nothing special.

Finally, line 50 transfers the ASCII value to the machine
language program and executes the program. When the
machine language program is done, it returns to BASIC.
Line 60 prints the ASCII character represented by the

CIPHER B $30CC o
\

N

SRHIFA o
LY 42000 [& />
e (S

-/

value transferred back from the machine language
program. Line 70 repeats the process.

RUN the program, and begin typing the alphabet. I'll be
with you next tirme. Be sure to review this lesson hefore
then.

The Code

dhen using the
editor/assembler; what does the
A command mean?

R weans assesble the mneeonic
code intc a group of 6889
imstructions.

+ When using the
editor/assesbier R command, what
does /IM mean?

/I means to assemble the
snemonic code into 6883
instructions, and place thee in
nEROTY,

When using the
editor/assembler A {assemwbie)
comsand with /IM (in wemory),
what does /R0 mean?

/A0 means to assesble the
sresonic code intc 6809
instructions and place them in
semory at the origin specified
in the ORE line,

* The source listing says ORG
$2408. You enter A/IW/AD.
Where is the first byte of your
source listing placed in
wenory?

fit location $2480.

Learning the 6809 35

36 Lesson 4

You’ve been using mnemonics lately in creating machine
language programs, and I think that’s gotten away from the
binary instructions themselves. It's these binary
instructions which are doing the work; the mnemonics are
how you and [remember what the instructions are and how
they operate. For example, one of the instructions in the
last session was to load the X register with the value labeled
CIPHER. CIPHER in turn was address hex 3000. Load X
with an immediate value is in fact hex code $8E.

The purpose of the editor/assembler is to make
programmers’ lives easier by accepting understandable
mnemonic statements like “Load X immediate CIPHER”
and turning them into machine codes like hex 8E 3000. The
mnemonics do make the program look long and
complicated, but in fact, in spite of all the apparent typing,
the entire program consists of 21 bytes!

I'd like you to load that encryption program again.

Program #11, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the program’s start and try again. For severe loading
problems, see the Appendix.

Jaae aataa CIPHER EQU BIQQQ
1@ aalia ORG SI160
31@@ 34 =] aaiza FSHE Y
1@z BD B3ED [ralr B "] JoR $RIED
31@5 8E etrdri v Q@149 LDX #CIPHER
3ia8 Ce 41 @15 SURE F T
SiaR A6 85 QgL 6@ L DA B.X
310C 1F 89 api7e TFR R« E
S1QE 4F aalan CLRA
31@9F EBED B4F 4 aaize JSR SE4F 4
311z 35 & aazae PULS Y
3114 33 Qazia RT&

ralrtralvi Qasc@ END
Qaane TOTAL ERRORS
CIPHER 3020@

Coming up in this lesson are the
hows and whys of using the
editor/assesbler, and a reminder
that its convenience features
are just that -- conveniences.
They are in no way a replacesent
for the awareness of what the

machine language is actually
doing.
tWhen a word like CIPHER

appears in 2 wnawonic listing,
what is it called?

A label.
#Is a label opart of the
orogran?
No, it is part of the source
listing.
fre the mmewonics the
program?
No, they form the source
listing.
*# This is the hex code the

program?

No, the hex code isn't the

progras either..

+ Then if labels nor snemonics
nor hex code aren’t the program,
what is?

The binary machine instructions
and data.

Learning the 6809 37

Mnemonic code

* If the label CIPHER is set ‘o
$3008, and the wmmemonic LDX
RCIPHER is assembled, what is
the binary result?

Hex $8E 30 @@, that is, 10891110
20110000 20000000,

¥ khat does ORG mean?
Oripin.
¥ What is the oripin?

The first byte of an assembly
listing.
+ What is an organized group of
labels, smemonics, and ooeramds
called?

Ain assembly listing or the
source code.

* What is the source code used
to produce?

Object code.
* What is object code?

Rinary instructions and/or
data.

% Hom is object code produced
from source code?

By assesbling it.
*+ There are four columns in an
EDTASM+ source code listing.

What is in the first column?

The saurce reference lire
number.

+ What is in the secomd columm
of an EDTASM+ source code
listing?

fn optional label.

What is in the third column of
an EDTASM+ source code listing?

The opcode.

38 Lesson 5

There’s the program listing in front of you. Let me refresh
your memory as to what this means. The label CIPHER
was used to indicate a memory location $3000. The origin,
that is the first instruction, of the program itself was set in
memory at $3100. My choices here were arbitrary; and free
memory could have been used. Since this program was to
be used in conjunction with BASIC, the first action was to
save the Y register on the stack, as recommended by the
BASIC manual. Next, BASIC's integer-conversion
subroutine was used to transfer the value from the BASIC
USR function to your program; again, this information was
recommended by the manual, a recommendation you have
to trust.

The X register was indexed to the first entry in a table of
encrypted ASCII values. $41 was subtracted from the B
accumulator — recall that the B register contained the
value after the integer conversion — to provide an offset of
$00 to $19 to the encryption table. In line 160, the A
accumulator loaded from memory indexed by X, with an
offset of B, that encrypted ASCII value. In preparation for
sending this value back to BASIC, it was transferred from A
accumulator to B accumulator, and A accumulator was
cleared to zero. Finally, the Y register was retrieved from
the stack, and a return from subroutine landed the program
back in BASIC.

I repeat that this is mnemonic code — code which serves as
a kind of verbal reminder to you and I as programmers —
but is not in itself something the 6809 processor can use.
The 6809 can only understand simple binary instructions
and data; the editor/assembler converts your mnemonic
code into those binary instructions and data.

In this lesson, I want to guide you in using the editor/
assembler, but first I would like you to see exactly what it’s
for. Type A, and hit <ENTER>. You'll see the “READY
CASSETTE" message, meaning it’s about to prepare an
object code tape. “Object code” is the jargon for a set of
binary instructions and data. Don’t worry about inserting a
tape now; just hit <ENTER> again. The tape recorder
relay will click on, and after a short pause, the screen will
scroll quickly by, filled with both yvour original source code
and with additicnal hexadecimal numbers.

Readiny the short, 32-character screen is tricky, so with all
of these assembled programs, I've provided a printed
listing for reference. Take a glance at the program in your
documentation. It looks much like the original source code
—— infact, it includes the entire source code -— but there are
several additions to it. All these additions are displayed in
hexadecimal notation.

In the first column, the memory locations, that is the
memory addresses to hold the program, are presented in
hexadecimal. In this case, the program’s first instruction
begins at $3100, and the last instruction is found at $3114.
The second and third columns contain the actual
instructions and data that will be placed in memory for the
6809 processor to execute.

Poke Y 5

TR~ +B3ED

LEK RCIPRER.
e

Hex Cooe. g
o A-1
B B3 ED
8 O oo

1

IRE -z maRmE

vt
R

®
N
\

PP w
§RERESS
PERRBR AL

{!'[
2ot
i

1TT!.
4
I\

. eeRns

3

‘\ \\ k

\

\

VSHS Y
<NY/~;1/
EENEERER

%20

SRS A, B Y

“"\Y‘/h, a‘g’»&h
[olo]/Te]o]/]/]0]
N A viguial

=$26

PSHS X,Y

u}‘m».Y/l_rdx’/4
L°J°7]V/ [7]o] o]o[o]
e

>

®

8

TFR A,
A= [O
B= [

(ITTITITT1]

R e e Ve
FROM T

Y

— &

FROM A B
P T e

[“Ie]elef/]olo]/]
= $87

The second column contains the Opcode (that is, the
operation code or instruction), and the third column
contains the Operand (that is, the data the processor uses).
T'll take each in order.

Opcodes first; follow down the column with me. The
opcode to push a value on the hardware stack is $34. The
opcode to make a subroutine call is $BD. $8E loads the X
register with an immediate value, $CO subtracts an
immediate value from the B accumulator, $A6 loads the A
accumulator in an indexed mode, $1F transfers a value
between registers, and $4F clears the A accumulator to
zero. Another subroutine call follows; that’s $BD. The
opcode to pull a value from the stack is $35, and a return
from subroutine is $39.

Each of these opcodes, after interpretation by the
processor’s internal instruction decoder, gives the 6809
information about what to do, what data is coming up next,
and how many bytes long the operand will be. The
operands themselves vary according to what the
instruction demands. In lines 130, 140 and 190, for
example, it's clear that the operands $B3€ED, $3000 and
$B4F4 are addresses, the first for a subroutine, the second
for loading into the X register, and the last another
subroutine. In line 150, the operand $41 is the immediate
value subtracted from the B accumulator.

Lines 120, 160, 170, and 200 are another matter. Here the
operands are not immediate values, but rather

informational data on how to complete the instruction.

Look at line 120, for example; the mnemonic says
“pushstack Y”. As Pve said, the opcode for pushstack is
$34. How about that hex 20?

Pull out your MC6809E data booklet, and turn to page 18.
On page 18, find the heading PULU/PULS. There are two
short tables under the heading marked “Pull Order, Push
Order”. You are looking at the order in which registers are
placed on the stack, you're also looking at the individual
binary digits within a byte.

The command you used was Push Y. Examine the table,
and find the Y register. The Y register is third from the left,
the position of bit 5. If you write a binary equivalent of this
row of registers, where a binary one indicates which
registers to push, then you would write 0010 0000. That
binary number is hex 20... the precise operand assembled
in line 120.

I don’t want to browbeat you with bits and bytes, but it's
extremely important to be aware, to keep in the back of
your mind at all times, what these binary codes do. You
don’t need to memorize any of them; that’s what your data
booklet is for. But knowing how to interpret what you're
seeing is key to effective programming and efficient
debugging.

Let me give you just one more example of these binary
operands. Keep your place on page 18 of the MC6809E

Learning the

Opcodes

+ What is in the fourth column
of an EDTRSM+ source code
listing?

The operand, where required.

* The four columns in an EDTASH+
source code listing are...

The referemce line number, the
label, the opcode, \and the
operand.

¥ When an EDTASM+ source code
listing is assesbled, what
information is added to the
displayed listing?

The hexadecimal
semory contents.

address and

¥ How wmany extra columns of
information are added when an
EDTASH+ source code listing is
assembled?

Three columns are added.

% What is in the first colusn of
the assembled listing?

The address, in hexadecimal.

What is in the second colum
of the assesbled listing?

The opcode, in hexadecimal.

What is in the third columm of
the assewbled listing?

The operand, in hexadecimal.

% In an EDTASM+ source listing,
how many colusms are displayed?

Four,
#In an assembled EDTASH+
listing, how many columns are

displayed?

Seven.

6809

EDTASM+

* What do the seven colums of
an assembled EDTASM+ listing
represent?

The address in hexadecimal; the

opcode in hexadecimal; the
operand in hexadecimaly the
reference lire numsber; an
optional label; the opcode in
EERONICs the operamd in
MNeRONics.

% What part of the assembled

EDTRSH+ listing is the machine
language program?

No part of the assembled EDTAGH+
listing is the machine language
program,

What
program?

is the machine language

It is the object code, or binary
informat ion.

t Bhat does the A comsand
instruct EDTRSM+ to do?

To assemble the object code.

Where is the final object code
placed?

On the cassette tape.

& What does the command A/IM
instruct EDTASH+ to do?

To assemble the object code into
BEMOTY.

t What does the command A/IN/A0
instruct EDTRSM+ to do?

To assesble the object code into
wemory at the origin specified
in the progras listing.

What is the assesbler word for
origin?

ORG.

What does the mmesonic PSHS ¥
pean?

Push the Y repister on the
hardware stack.

40 Lesson 5

data booklet, and look at line 170 in the program — the
instruction is transfer A to B. The transfer opcode, as
noted, is $1F. On page 18, under the heading TFE/EXG,
you'll see combinations of four binary digits. Each
combination represents a specific register. The “transfer
from” register makes up the left-hand four digits of a byte;
the “‘transfer to” register makes up the right-hand four
digits. According to the chart, then, transfer from A to B
should put a value of 1000 in the “from” position and 1001
in the “to” position, creating a complete binary word of
10001001. 1000 1001, you should expect by now, is hex 89
— the same value as the operand assembled in line 170.

Next in this lesson I will be guiding you through the entry
and editing of source code using the editor/assembler
EDTASM+. I recommend you take a break and review
now, and when vou are done with your break, turn to page 3
of the EDTASM+ manual, and read the Introduction.

Read and review the EDTASM+ introduction. The introduc-
tion is printed on the facing page; for more detailed information,
continue with the EDTASM + manual. Return to the tape when
you have completed the reading.

Time to start fresh. If you’ve just come back from reading
the EDTASM+ Introduction, your computer is probably
up and ready to go. Even so, please turn the computer off,
insert the editor/assembler EDTASM+ cartridge in the
slot, pause, and turn it back on. The star prompt will come
up shortly. I'm going to give you some guidance in entering,
editing, and assembling your source and object code with
the EDTASM+ program.

The first thing to remember is that EDTASM+ is a
programmer’s program. [t doesn’t have the fanciness and
fussiness of BASIC, and it can’t tell vou if you've written a
program that will work. Its job is exclusively to translate
mnemonic source code into binary object code, and inform
you if you've typed the source code incorrectly or made an
errorinlabeling or numerical range, or if you have asked the
processor to perform a function it’s incapable of. (Another
feature of the EDTASM+ program cartridge is ZBUG, but
that’s not for this time.)

To help you achieve your programming ends, the editor
keystrokes are minimal and the editor’s commands are few.
If you are using an editor/assembler other than
EDTASM+ (which you may remember I didn’t
recommend) these instructions will apply only in part;
many of the specifics will be quite different. What all 6809
editor/assemblers have in common, however, is the
mnemonic source code.

Time to start. Your most frequent editor commands will be
Insert, Delete, Print, Number, and Edit. Just for reference

W&

EJIASME

The brain of the Color Computer is the 6809 Micropro-
cessor. It is always operating in 6808 machine code, the
only language it knows.

When you program in BASIC, a ROM program called the
BASIC Interpreter “translates” each statement, one at a
time, into 6809 machine code.

The Editor-Assembiler + allows you to write a program in
6809 assembly language and assemble it into a single,
efficient 6809 machine code program. This gives you
two very powerful advantages:

» You are no longer limited to the commands in the BASIC
language.

« Many steps that are necessary to interpret a BASIC
statement into machine code will no longer be needed.
Therefore, the programs you write with the Editor-
Assembler + will run much faster, and probably use
less memory.

This manual demonstrates how to use the Editor-
Assembler +. It will not teach you how to program in
assembly language. Radio Shack has an excellent book
devoted to the subject. It's Catalog Number is 62-2077.
You can purchase it through any Radio Shack store.

The Editor-Assembler + contains three systems:

- The Editor, for writing and editind 6809 assembly lan-
guage programs.

« The Assembler, for assembling the programs into
6809 machine code.

» ZBUG, for examining and debugging your machine
code programs.

To use them, all you need is a Color Computer with 16K
RAM and a tape recorder.

How You Will Use
These Systems

1. First you'll write the program in assembly language,
using mnemonics which the Assembler recognizes
and which is fairly easy to use. This is done in the
Editor and the resulting program listing is called TEXT.

2. Then you'll assemble the instructions of TEXT into
machine code which the 6809 Microprocessor can
recognize, but which looks like nonsense to most peo-
ple. Thus, you'll create CODE consisting of op codes
and data.

3. You'll use ZBUG to test and debug CODE until it's per-
fect. Then you'll store it on tape. Storing CODE is the
final task of the Editor-Assembler +.

4. From BASIC, you'li load CODE (with CLOADM) and
run it. You can either run it as a stand-alone program
(with EXEC) or as a subroutine (with USR).

Learning the 6809

EDTASM+

41

Inserting lines

What is the hexadecimal opcode
for PSHS?

$34

% How is does the operand for
opcode $34 (PSHS) identify which
registers are to be pushed?

By the order of the binary
digits in the operand.

The order of the binary digits
for the push operand is PL, §
for 1, Y, X, DB, By A CL.
What is the binary operand to
push registers A, B, X and ¥ on
the stack?

ogeila1ie.

What is the hexadecimal value
for binary 901181187

36

+ Bhat is the hexadecimal value
for the opcode PSHS?

$34

i What is the complete
hexadecimal instruction PSHS
A,B, X, Y?

$34 36

Dnce again, the order of
binary digits for stack pushing
is PC, 5 {or), Y, X, DR, B, A,
L. What is the operand; in
binary and hexadecimal, for PSHS
X,B?

Binary 20218108, hexadecimal
$14,

* What is the complete
instruction, in binary and
hexadecimzl, for PSHS X,B?

Binary 00110100 0000108,

hexadecimal $34 14,

What is another name for this
kind of operand?

A postbyte.

42 Lesson 5

as you go along, I'll tell that you can get out of any
EDTASM+ mode by hitting <BREAK>.

There is no requirement to manually number every line in
EDTASM+, saving you considerable time and energy.
Simply type and enter ‘I‘. The first available line number,
00100, is presented with the cursor ready for your
information. You may now type anything you like on this
line. Since renumbering and block search can be done, and
since the editing commands are identical to BASIC’s and
already familiar to you, you might even want to use the
editor as a low-grade word processor. For this lesson,
though, the point is to develop 6809 mnemonic code. To
practice, type something now . .. a few letters or numbers,
whatever, and hit <ENTER>. The information in that line
has been stored, and the next line, 00110, is ready for use.
Type some more characters and hit <KENTER> again.
Line 00120 is in place. At the start of a session, automatic
line insert mode starts at 100 and advances in increments
of ten lines. But you may change that any time. Tap
<BREAK>.

By typing and entering “I917”, the editor will begin
numbering lines at 917. Type and enter 1917. The line
00917 will be presented together with the cursor. Hit
<ENTER> a few times. Lines continue to be added in
increments of 10, so you should be seeing 00927, 00937,
00947, etc. Tap <BREAK> again.

You can change the line increment as well as which lines
you are inserting. Type and enter “11111,2”. Line 01111
will be displayed. Hit <ENTER>> a few times, and notice
that the line numbers do indeed increase by two at a time
rather than 10 at a time ... 01113,01115,01117, and so
on.

That's the essence of using the editor/assembler’s
automatic line numbering system.

To look at what you've done, you have to print the
information on the screen. To avoid conflicts in the single-
letter command system of EDTASM, the letter “P” was
chosento print to the screen. InEDTASM+, the seemingly
more logical “L”" doesn’t mean list; it means load from tape.
So to print a line on the display, simply enter the letter P
followed by the line number; leading zeros aren’t
important. For example, to display line 00110, just enter
P110. The line will appear. Try that.

There are many convenience features in the editor/
assembler, features which you will find reduces your
programming time. To print the next 16 lines on the screen,
for example, merely enter “P”. Even better are the three
symbols for first line, current line, and last line. First line is
represented by a number sign (also called the crosshatch or
pound symbol. I callit “pound” becauseit’s easier for me to
say than “crosshatch” and isn’t as ambiguous as
“number”.). Use a period to indicate current line. The
asterisk (the star) indicates the last line. Together with

BT

00/00 ABCPEF&
Emo//o []
I

e

5exe/7
0097 W

;

I

I
eI/ 7
’(:mv '7

o927

0937 B

e
‘3@’//77
oYY
0rr:3
s A

loo1oo ABCPEFE

}‘a*l
I

loci03 B
i

—
®Iio,i
locoro

locor s

0002

looor 3
®N10, 10
IR

O00/0

loooze

00080

those, the colon acts as the from-to delimiter, as in
“P100:200".

So to print the first line of the program on the screen, just
enter “P#”. Print the whole program by entering “P#:¥",
Find your last line by entering “P*”, Print the first three
lines by entering “P#:120”. Display from your current line
to the end of the listing by entering “P.:*’. With the
symbols # for first line, . for current line, and * for last line,
you've got complete control of your position within the
program with the least amount of typing.

The insert mode uses these convenience features, too.
Simply typing “I” requests the editor to insert a line,
starting wherever you are now, at the increment you last
used. “L,3” will insert a numbered line at your present
point, with an increment of 3 lines. “I#” will attempt to
insert a line after the first one in your program, again using
the last increment you specified.

Notice that, when you print your text on the display, there
are numbered lines with no infermation. The editor is quite
respectful of your requests, and, where you have indeed
entered an unused line, it will let it stand. Unlike BASIC,
re-entering a line number alone won’t get rid of it. With
EDTASM-, you must specifically delete unwanted lines
with the D command.

Delete also uses the editor’s set of convenience features.
You can delete any line by entering D and the line number,
such as D110. You can delete the first line using “D#”’, the
last line using “D*”, or the current line using “D.” or just
“D”. To delete a group of lines, say 1111 to 1115, enter
“D1111:1115”. Try that. D1111:1115 <ENTER>. To
delete the entire text so far, simply enter “D#:¥”. That’s
D#:*,

Now attempt to print a listing on your screen . . . enter “P.”
You'll get one of EDTASM’s many full messages, builtinto
assist your programming without constant reference to the
EDTASM+ manual. This message says, “BUFFER
EMPTY”. Since you have deleted the entire text by
entering “D#:*”, the editor is giving you the unequivocal
confirmation that the text buffer in fact contains no
lines.

Type “110,1”, and press <ENTER>. Line 10 will be
presented. Type a few characters, and enter this line. Do
the same for line 11, line 12, and line 13. Tap <BREAK>,
and print the listing by entering “P#:*”’. Now insert a line
between 11 and 12. Try “111,1” <ENTER>. NO ROOM
BETWEEN LINES, eh? Now try this: enter “N10,10”.
That’s “N10,10”. You're asking it to renumber, starting
from line 10, in increments of 10 lines. Print the listing by
entering “P#:*”. You should see lines 10, 20, 30 and 40.

Now try entering “I10”, as before. Still NO ROOM
BETWEEN LINES? Don’t forget that the last increment
specified is the one the program will use . . . and that

Learning the

Printing lines

Does the TFR {transfer) opcode
have a posthyte?

Yes.
* Describe the TFR postbyte.

The TFR postbyte is divided in
halfy the left {most
significant) half indicates
"from", the right (least
significant) half indicates
*to".

+ How many columms are there in
an assembly source listing?

Four.

% RBhat
coluan?

is found in the first

The source referenmce line

number.

£ What EDTASM+ command inserts
lines into the source listing?

The 1 command.

Hom is line 999 inserted
the source listing?

into

By entering 1999
* What does 11088,5 mean?

Insert lines into the source
listing, beginning at line 1000
and continuing in increments of
3 lines,

® How do you insert limes,

starting with 508, in incresents
of 58 lines?

1508, 50

+ What comsand displays source
lines on the screen?

The P command.

% How would you display source
line 497

By entering P4Q

6809 w

Convenience features

How would you display the
first source line?

By entering Ph

% How would you display the last
source ling?

By entering P#

How would you display sources
lines 4@ through 168@?

By entering P4@:1009

% How would you display the
entire source listing?

By entering Pl:#

+ What is the
*current line®?

syshbol for

The period (.)

* How would you ask to edit the
current linge?

By entering E. (E period)

How would you renumber the
listing, with the renumbering
beginning at line 1088 and
proceeding in increments of |
line?

N1@2e, i

+ What are the sysbols for first
line, last lime, and current
1ipe?

3 +# and . (pound, star and
period)

& If your source listing were in
increments of ten lines;, how
would you insert a line halfway
between your current line and
the next line?

By entering I.,35

44 Lesson 5

increment was specified as 10 when you renumbered the
listing. To insert lines between 10 and 20, how about
entering “110,2”. There you have line 12, ready to go. Tap
<BREAK> now.

The last of your most-used commands will be “E”, the key
letter for edit mode. E can be used only to edit a line at a
time, but the convenience features # . and * are always
available. Within the edit mode you have at your disposal
all the editing features of Extended Color BASIC. These
editing features are quite versatile, butI feel alittle outside
the scope of these lessons. There’s lots more to be done
with 6809 assembly language itself.

So here’s my proposal. At the end of this lesson, review
what has been done so far: binary and hex code, 6809
processor architecture, understanding mnemonics, and so
forth. Then spend some time with those few EDTASM+
source programs that have been presented so far. Instead
of loading them from tape, try typing them in; by the way,
use the right arrow to tab between columns rather than
using spaces between columns of source code. Also, turnto
your Extended Color BASIC manual and your EDTASM+
manual, and get familiar with those editing features. You'll
be using EDTASM+ for the duration of these tapes, and I
won’t be pausing as long when I describe commands. You’'ll
need to know those editor commands, so put in the time
learning its features now to make your work much easier
later.

