Learning the

Micro Language Lab

Dennis Bathory Kitsz

7 Green Mountain Micro

First Edition
Second Printing Roxbury, Vermont

The Micro Language Lab:

Learning the

© 1983 by Dennis Bathory Kitsz. All rights reserved.
Learning the 6809 audio cassettes ©® 1983 by Dennis Bathory Kitsz.

First Edition
First Printing
Printed in the United States of America.

ISBN 0—916015—00—9

Recording: Steve Lusk, Claire Manfredonia, JoAnn Trottier
Recording Supervision and Tape Editing: Dennis Bathory Kitsz
Ilustrations: Jim (Doc) Holliday

Cover, Layout and Design: Dennis Kitsz

Typesetting: Northfield News; 1JG Inc.

Additional Design and Preparation: M. J. Rufino Associates, Marie Lapre” Grabon
Sherlock Holmes: Peter Clarke

Dr. Watson: Kalvos Gesamte

Automebile: Steve’s Honda

Marge: Claire Manfredonia

Cook: Steve Lusk

Mac: RB2—3

The Drivers: Kalvos Gesamte and JoAnn Trottier

Chocolate Cream Pie: Bev Fischer

Thanks to Jane and Ed Pincus, Chuck Trapp, Harv Pennington, Bruce Stuart, RB2—
3, Jim and Ingrid Wilson, Tom Bentley, Mary Bocage, Michael Rufino, Matthew and
Gabriel and Beth Ann Betit, Paul Wiener

Notebooks by Mid-~America Plastics

No portion of this book or these cassettes may be reproduced m whole or in part, by any means
ncluding but not limited 1o electromechanical. electronic, and photoreproductive, or may be
stored in any vlectronic data storage and retrieval device except as specified in the Micro
Language Lab instructions and limited to the tne and equipment of the purchaser, without the
oos written permission of the author and Green Mountain Micro. No software license 1s
granted with the purchase of the Micro Language Lab; example programs are for personal use
only. Neither the publisher nor the author assumes any responsibility or liability for loss or
damages caused or alleged 10 be caused directly o indirectly by appheation of the information
or software presented in the Micro Language Lab, including but not hmited to any interruption
of service, loss of business or anhicipatory profits, or consequential demages resulting front the
use, operation or application of such miormation or software. Also, no patent liability is
assumed with respect to the use of the information contained herein. While every precaution
has been taken in the preparation of the Micro Language Lab, the publisher and the author
assume nG responsibility for errors or omissions.

TRS—80, EDTASM+, Color Cemputer, Radio Shack, and Color BASIC are trademarks of Tandy
Corporation. Portions of the EDTASM+ manual and the TRS—80 Technical Reference Manual ©Radio
Shack, a division of Tandy Corporation. Reprinted by permission.

Cataloging Information:

Kitsz, Dennis Bathory, 1949

Learning the 6809. {The Micro Language Lab). viii, 222 pp.
Roxbury, Vermont, Green Mountain Micro: 1983.

Preface

When IBM introduced its Personal Computer with grand
gestures and flourishes, the reviewers and the public
seemed overwhelmed, as if in the presence of royalty. The
PC’s 16-bit microprocessor was revered and its BASIC
praised, while its operating flaws were forgiven. Everyone
seemed to say, “Good show, IBM. Wish we’d thought of
that!”

Tandy Corporation doesn’t have that classy IBM image.
When Radio Shack introduced its Color Computer, hardly
anyone noticed. It looked for all the world like another toy,
said the critics.

Maybe Radio Shack needs to work on its grand gestures
and flourishes a little harder. That toylike Color Computer
appeared more than a year before that IBM PC. 50
although the microcomputing press pointed to the PC as
innovative for including line, circle, draw and paint
commands, they had conveniently overlooked that these
same BASIC commands were actually introduced a year
earlier on the Color Computer. And while critics talked
about 16-bit processing power in the IBM machine, they had
conveniently overlooked that both the PC and the Color
Computer contain powerful 16-bit “internal” -- but 8-bit
“external” -- microprocessors.

As 1 said, it's an image problem. The Color Computer, at
one-quarter or less the cost of IBM’s pricey PC, is the
computing bargain of the early 1980s. And the heart of the
bargain les in the heart of the computer: the 6809
Processor.

The 6809 is the Maserati of the 6800 family. It’s fast, sleek
and powerful. Almost anything any processor can do, the
6809 can do better. Its software capability is almost
unrivaled in the 8-bit world, and its hardware features are
stable and easily applied. Combined with its cousins - the
6883 address processor, the 6847 video processor, and the
6821 interface circuit -- the 6809 creates a simple yet
versatile personal computer. The Color computer is
actually a practical computer application suggested by
Motorola, the 6809’s manufacturer.

Learning the 6&)9

w

“Learning the 6809” was created to fill a knowledge gap.
The 6800 family hasn't produced any real “pop” processors.
The 6502 achieved its glamour in the Apple, the Z80 became
known through its presence in so many different TRS-80
computers. The 6809 looks different. It works in powerful
ways which are, unfortunately, alien to users of 6502, Z80 or
IBM-PC-style 8088 computing.

Be prepared to work hard; this course isn’t an information
giveaway. If you want to find out how to copy Joe’s
Lumbergrunters game, forget it; the answer won’t be here.
But you will be able to answer the question yourself by
applying the knowledge, tools and techniques I present.
This isn’t “Using the 6809 to Learn the Color Computer” --
it’s “Learning the 6809”, where the Color Computer is the
practical example. When you finish this series of tapes,
you'll have the tools to explore the programming limits of
the Color Computer, you'll be prepared for programming
other 6809-based machines, and you'll be ready for the
programming concepts and principles of the 68000 family of
full 16-bit processors.

Work hard. With concentrated listening, by working out
each example and by answering every question, these 24
half-hour lessons should take you anywhere from 50 to 100
hours to complete. By then, you'll be speaking 6809. Work,
enjoy, and good luck.

W(T‘z ps

Acknowledgments

It was midway through a long, bleak Vermont winter day
spent with an incomprehensible microprocessor data book
that | conceived of the Micro Language Lab. The data book
made no sense to me. Engineers, 1 thought, don’t speak
English. No, I reconsidered, that’s wrong. Engineers speak
eloquently, but in an English far different from the rest of us.
Just like musicians. And typographers. And artists. And
priests.

A book was needed for 6809 users, and Color Computer
owners in particular. I glanced at my library of programming
books, lcoking desperately for ideas and inspiration.
Nothing there. I couldn’t think like Adam Osborne and |
couldn’t write like Bill Barden.

But talking was something fluid. Ideas that came to me
easily when | was speaking would choke and gasp at my
typing fingertips. Perhaps if I took microphone to hand, |
could close my eves and imagine a circle of anxious faces
around me - hanging on every word -- and the eloguence
wauld begin...

The project got down to business at the same time Green
Mountain Micro was established as my full-time occupation.
| sat across from my old friend and business partner, RB2—
3 (born with that name -- really!), and presented the idea.
Sure, talk, great, he said, do it.

That was the easy part. The talking came quickly. But with
me a musician and RB an artist, we found ourselves as
babes in the business woods. We needed pretty notebooks,
crates of cassettes, someone to print cassette labels and
stick them on, a good and accurate typesetter, a nearby
printer, recording and editing facilities, a duplicator, and a
hundred sundries.

Everyone went to work. RB, our friends and new employees
JoAnn and Steve, and my wife did the recording in my
music studio. [edited the tapes onto the floor in a two-foot
heap of qutteral stumbles and flubbering stutters. Graphics
designers visiting from New York were ingloriously put to
work on the layout. The typesetting was done very
efficiently by computer connection to California, but on the
trip back, the shiny (and expensive) new strips of typeset

Learning the 68()9 v

got lost -- twice! -- in the back rooms at Federal Express.
People (specifically me) got sick, the printer went on
Christmas vacation, and our New York visitors escaped in
the dark of the night.

Meanwhile, advertisements placed three months ahead of
time began to appear. Faithful customers had placed orders
for the holidays. We worked round-the-clock, only to have
the last few weeks tumble into an abyss of chaos and
exhaustion. We blew our deadline. As I write this, the final
pieces fit together. The result is Learning the 6809, what |
consider my -- and Green Mountain Micro’s - finest work.

During the craziness of preparation, our combination home
and office took on the look of a factory as dedicated people
traipsed in and out, crossing paths at 3:30 a.m. in 25-below
winter weather. Those deserving my sincerest thanks:

-- RB2-3, for going along with the Micro Language Lab idea
and for leaving me alone and phone-free for a whole month.
-- Jim (the Doctor) Holliday, for completing three hundred
illustrations in a record two weeks; and Lynda, for not
holding those all-nighters against us.

- Mary Bocage and Michael Rufino, who escaped in the
night leaving it all under control; Marie Lapre Grabon for
finding it under control.

-- Chuck Trapp, for controlling those typesetting codes for
three straight weeks and through two lost shipments; Harv
Pennington, for delivering on the nromise; Bruce Stuart for
remaining cool; and Paul Wiener for half-duplex.

-- Jim Wilson, Tom Bentley, and M. Dickey Drysdale, all of
whose last-minute cooperation alleviated the typesetting-in-
Vermont syndrome.

-- JoAnn Trottier and Steve Lusk, who realized too late the
meaning of “going on salary”.

-- and for things many and varied: Claire, Peter Clarke, Deb
Marshall, Charlie Freiberg, Claire, N. Spike Maggio, Gerald
and Susan D’Amico, Cornelius (“the burritos are in”)
Murray, Claire, Tom Hardy of Motorola, Greg Keilty, those
first faithful 80 customers, and Claire.

Contents:

1. INTRODUCTION

Introduction; necessary items; what you will learn; what is
assembly language; assembly language is not BASIC,
comparisons and contrasts; speed and flexibility demonstrations;
programs

2. NUMBER SYSTEMS

Introduction; everyday non-decimal systems; binary system;
Sherlock Holmes scenario; powers of 2, bits and the alphabet;
hexadecimal names; counting; ASCIL; program 4.

3. THE MICROPROCESSOR

Introduction; names and terminclogy, ALU; accumulator;
memory; addreses; Program Counter and registers; moving a
message to the screen; sample programs; condition codes;
compares; source code; programs 5-8.

4. MNEMONICS

Introduction and sumrary; mnemonics; opcodes and operands;
tables, addresses, and offsets; labels; machine language and
BASIC: stacks; subroutines; writing a program; origins and ends;
programs 8-10.

5. EDITOR/ASSEMBLER

Introduction and summary; source and object code; opcodes,
operands, and hex rode; mnemonics; insert, delete, print,
number, and edit; editor messages; program 11.

6. ADDRESSING MODES - 1

Introduction; jargon: how information is stored in memory;
inherent addressing; register addressing; immediate addressing;
extended addressing, direct addressing; mnemonics and
examples; review.

7. ADDRESSING MODES - 2

Introduction and summary; indexed addressing; zero and
constant offsets; automatic increment and decrement;
accumulator offsets; examples and mnemonics; relative
addressing; signed numbers; branching; counting; summary;
program 12.

8. INSTRUCTIONS - 1

Introduction and summary of registers; reading data sheet tables;
instruction operations in binary and hexadecimal; ADD and
SUBtract; logical AND, logical OR, COMplement {logical NOT),
logical Exclusive-OR; shifts and rotates; DECrement and
INCrement; NEGate; program 13.

9. MAKING THINGS HAPPEN - 1

Memory maps, reserved vector and control area; the SAM; write-
only registers; ports; video display generator; high speed; video
paging; summary and examples; programs 14—16.

10. MAKING THINGS HAPPEN - 2

Summary; machine language in BASIC DATA statements; source
code equivalents; hand assembly; displaying hexadecimal
numbers; covnerting a number to an ASCH character; converting

a byte to two 4-bit numbers; summary and examples; program17.

11. HAND ASSEMBLY - 1

Summary; screen display and update; hand assembly of LDA,
LDB, LDY, TFR, STA, STB, of calls and loops, of indexed
operands, and of relative branches.

17

27

37

45

53

63

75

89

97

vii

12. HAND ASSEMBLY - 2

Continued hand assembly of loads, stores, subroutines and
relative branches; locating labels; running the hand-assembled
program; ASCII conflicts with video display generator; POKEing
as a solution, EDTASM+ assembly; first half course summary;
programs 18—20.

13. TIMING AND SOUND - 1

Timing in microprocessors; delay loops; Morse Code examples;
interrupts; lookup tables, sound; silence; programs 21—22.

14. TIMING AND SOUND -2

Summary; regularity; producing tones; timing calculations; using
the assembler; programs 23—25.

15. INDEXED INDIRECT AND STRUCTURE - 1

Introduction; locating information indirectly; the Game of Life:
selecting color graphics modes; creating program setup
parameters; scratchpad memory; filling memory; program 26.

i6. INDEXED INDIRECT AND STRUCTURE - 2

Using the stack; FCB and FDB pseudo-ops; filling memory using
stack operations; constant-offset indexed; indirect indexed; using
high-resclution color graphics; rotation and branching.

17. INDEXED INDIRECT AND STRUCTURE - 3

Summary; completing the Game of Life; indexed indirect review;
creating commented listings; drawing on the listing; structural
(flow) chart; pseudo-ops; summary; program 27.

18. POSITION INDEPENDENT CODE - 1

Definition of position independence; P.1. instructions; using LEA
instructions; program—counter relative; relative subroutines;
branches, long branches; simple, simple conditional, signed and
unsigned conditional branches; examples; programs 28—29.

19. POSITION INDEPENDENT CODE - 2

Completion of moving program,; also, coverage of miscellaneous
Instructions: ABX, ADC, BIT, DAA, EXG, MUL, NOP, SBC,
SEX, TST: examples; program 29.

20. REPRESENTATION OF NUMBERS

Integers and signs (review); powrs of two; floating point; binary
representation; samples and examples; arithmetic; program 30.

21. USING BASIC

Protecting memory; free memory space; using CLEAR; offsets to
origin using CLOADM,; using FCC; high-resolution storage; string
packing and VARPTR; EXEC and USR; transferring information;
warnings; summary, examples; programs 31—33.

22. INTERRUPTS - 1

NMI, IRQ, FIRQSWI, SWI2,SWI3; setting and resetting
interrupts; vectors; PIA synchronization; creating a software
clock; RTI; chaining vectors; auto pre-decrement; program 34.

23, INTERRUPTS - 2

SYNC and CWAI: PIA control functions; horizontal and vertical
synchronization; field synchronization; mixing alphanumerics and
graphics; labeling examples; interrupt service routines; creating a
multi—mode display; program 35.

24. COURSE SUMMARY

Debugging; methods; stepping through memory; stepping
through execution; how the programs in this course were
debugged; brief summary of the entire course.

103

113

121

131

139

145

155

165

173

181

191

199

209

Hello. P'm Dennis Kitsz, your guide through the
subminiature world of assembly language programming for
the 6809 microprocessor. As you move with me through
these new software concepts, I believe you'll constantly
have mixed emotions. You'll likely find it rewarding . . .
frustrating . .. enlightening. .. tedious — as well as very fast
and powerful.

You probably know Color BASIC or Extended Color
BASIC. But please start off learning with a blank slate;
clear BASIC from your mind. Except for a few early
examples, BASIC won’t help you to learn 6809 assembly
language. And, if you haven’t found out already, you'll be
surprised to discover how slowly BASIC really does work
for you. On the other hand, it is a language that spoils you,
with many convenient features, error messages, and
programming prompts. By contrast, assembly language
will at first seem the height of tedious absurdity. “All that
just to clear the screen?”, you will ask.

Don’t worry. The feeling is almost universal. I'll admit right
here that the breakthrough in learning assembly language
for me took almost a year. There was no one to guide me.
And because I remember that sense of frustration, I want to
guide you.

If you're a newcomer to 6809, but know other processors,
be prepared for some major differences in concept and
approach, These are different languages we’ll be working
with. So whether you're a seasoned programmer or
discovering assembly language for the first time, don’t rush
through these tapes; work with each one. Try every
program. I've organized each lesson carefully so I won't
waste your time, but even so, every concept will be
presented and reinforced; most demonstration programs
are provided on tape to save you the typing. So turn off the
TV or radio, send the kids to bed, unhook the telephone,
and pack the spouse off to bowling or a movie. More than
anything else, assembly language takes concentration, the
elimination of distractions, and -~ occasionally -— the
ability to suspend time and reality. Let me say part of that

Learning the

This is the orograssed learning
section of the Ricre Language
Lab. In this colusn you will
find guestions and answers about
the accospanying text in the
forw of quick questions, Alsg,
your regular exercises and
self-tests appear in this
colusn, To make best use of
these guestions, start at the
top of the page, and use a card
to reveal each guestion but to
cover the answer, Try to answer
the guestion, and imgediately
compare yowr answer to the
answer in the book,

For full wuse of the Micro
Language Lab, follow these steps
for each lesson: First, listen
to the cassette tapes and follow
along. Second, read the tent
and attespt the accompanying
guestions as you go alomg.
Third, start over and attewpt
the questions by thewselves.
Repeat the secomd and third
steps urtil you can anseer all
the guestions without reference
to the text. Then you are ready
for the rext lesson.

It works like thiss
+ How many steps are involved in
using the MNicro Language Lab
prograseed learning?

Three sieps are imvolved in the
prograesed learning.

6807

Requirements

& Hhat is the first of the thres
steps in the Hicro Languape Llab
prograsesd learning?

The first step is to listem o
the cassette tapes.

% What is the second of the
three steps in the Micro
Language Lab programeed
learning?

Read the text and try the
questions.

% What are the Tirst two steps
in the Hicre Language lab
programsad learning?

1. Listen to the casseite tapes.
2. Read the text and try the
guestion.

dhat is the last of the three
steps in the Micro Language Lab
programeed learning?

The third step is to learn the
amswers to the guestions without
referring to the text.

Vhat are the three steps in
the Bicro Language Lab
prograsmed learning?

i. Listen to the cassette tapes.
2. Read the text amd try the
guestions. 3. Learn the answers
to all the guestionms.

So that's how it goes.

2 Lesson 1

again. Assembly language takes concentration and the
elimination of distractions.

There are also some things you will need for this course.
You can’t get along without an E ditor/Assembler, so please
don’t try. Get ome. Radio Shack calls this program
EDTASM+, and it’s available in a ROMpack cartridge for
all the Color Computers. It contains an Editor/Assembler
system, which Fll help you learn to use, a rundown of the
6809 instructions, and other pertinent information. All the
sample programs are compatible with EDTASM-.

You will also need a machine-language software monitor.
That's part of the EDTASM+ cartridge, but if as you
progress you feel you need more features, then there are
several excellent commercial programs available.

Blank cassettes are necessary only for saving original
programs as you write them. You won’t need blanks with
this package to do any of the demonstration programs since
everything is typed for you. But as you develop software,
you may find that you like what you've done enough to keep
it. For this you will need blank tapes.

Keep your Extended Color :BASIC manual handy for
reference, have paper and pencil ready, and take out the
enclosed MC6809E data booklet and leave it nearby.

Finally, you will soon find that unplugging cables from your
cassette player is no fun. Both my voice and all the
programs are recorded together on these cassettes.
Enclosed in this package are plans for a simple switch box
so you. can flip between listening to me and loading
programs into your computer.

Support materials:

EDTASM+ and manual
Color Computer Technical Manual

Technical Manual Supplement
MC6809E data booklet {included)
MC6821 data booklet (included)
MC6847 data booklet (included)
MC 6883 data booklet (included)

RS Cat. No. 26-3250
RS Cat. No. 26-3193

RS Parts No. 8749420
Motorola DS9846-R1

Motorola DS9435-R3
Motorola DS9823
Motorola ADI-595R1

Now I want to teil vou what you will be learning in this
course. You will discover that assembly language is nothing
like BASIC, but also that there are real advantages and
disadvantages to using either one on the computer. You will
learn binary and hexadecimal number systems, why they
are needed at all, the ASCII codes, the job of the
microprocessor, its architecture and timing, data flow, a
little about how hardware relates to all of this, and lots of
jargon. There will be lessons on memory maps, CPU
control, input and output techniques, instruction sets,
operation codes, instruction names, the inside and outside
of the processor's world, and more jargon. Lots of
demonstration programs will be provided, and in trying
them you will learn how to use machine language monitors,
editors, assemblers, and debugging techniques. Midway
through the course, you will be learning all the different
types of assembly language commands and their operation,
how to use some subroutines already written for you in
BASIC, the pitfalls of depending on that option, and more
jargon. By the end of these tapes, you will be writing your
own keyboard and screen subroutines, hopscotching data
through memory, doing graphics and sound, and
interfacing fast machine language with the simplicity of
BASIC. And, of course, you'll be able to intimidate your
friends with all the jargon you will use with such ease.

So now take some time to relax, clear your mind, and get set
to begin learning 6809 assembly language programming.
By the way, Claire is here to tell you exactly when to turn
this tape on and off, when to load programs, and where to
look in your booklet for your next instructions.

Let's get started. I've already said that the
microprocessor’s language is not BASIC. So what is it?
Theoretically, that answer is simple. The microprocessor’s
language — the machine’s language — is a set of binary
signals which causes predictable electronic events to take
place within a microprocesser and in relationship to its
external memory, events which can be combined and
expanded into control signals, mathematical calculations,
video displays, and high-level languages like BASIC
itself.

However, I'm not sure this definition is very a useful start.
Let me try it from a different angle. Imagine your car is a
computer. Youunlock the door, openit, sit down, puton the
seat belt, insert the key, start the ignition, release the
brake, put the car in gear, let up on the clutch, step on the
accelerator, turn the wheel, and off you go. That’s
BASIC.

Machine language takes you inside. You unlock the door by
inserting a key whose ridges lift tumblers to specific
heights, enabling a cylinder to turn inside a shell, releasing
certain mechanical barriers. Open the door by pressing a
button which engages some levers, slides and springs,
allowing the door to be pulled out on hinges. The seat belt
unrolls from a spring-loaded coil, perhaps turning off a
small switch as it is pressed into a latch. Another key is for

Learning the

Machine Language

What is the first thing you
will discover in this rourse?

That asseasbly
nothing like BRSIC.

language is

Neme tihree obther Whings you
will laarn in this cowrse (there
are several answers to this
guestion)?

Nuwber systeas; architecture and
timing; data flow ... or

Pomory maps; instruction seis:
operation codes ... o

Eraphics; sound; jargom.

% fgain, the first thing you
will learn in this course is...

...that assembly lamguage is
nothing like BRSIC.

% When you hear Claire's voice,
she will tell you one of three
things. What is the first one?

When to turn the tape on and
off.

Claire will tell you when to
turn the taoe on and off. What
is ancther thing she may tell

you?
khen to load programs,

Claire will tell you when to
turn the tape on and off and
when to load programs. What
else w3y she tell you?

Where to look in your book for
your instructions,

& What is amother name for the
nicroprocessor's language?

frother name
Kicroprocessor!s
pachine language.

for the
langeage is

How is knowing BASIC like
driving a car?

Because both are simple to use
but cause complex operations
inside a machire.

Memory Map

eihat do you call the
description of how the
cosputer!s desigeers have
arranged its memory?

f wemory ®ap.

¢ How many characters of mesory
does the norsal display screen
usa?

312 characters.

& At whst semory location doss
the normal display screem begin
on the Color Computer?

#t wemory lorcation 1824,

% How many memory locations are
there in the Color Computer?

There are 65,336 memory
locations i the Color
Computer.

¢ What is the arrangesent of

these meaory locations called?

The mewory map.

ihere does the normal display
screen: begin in the wemory map?

At location 1024,

% dhere does the norsmal display
screen end in the sewory map?

ft location 1535

% How sany mesory locations doss
the normal Color Computer
display screen use?

The screen uses 512 locations.

& How many sesory locations are
there aliogether in the Color

Cosputer mesory map?

There are 65,336 locations in
the memory Bap.

What is the nusber of the
first wemory location?

1t is number 8 (zerol.

4 Lesson 1

another set of tumblers which releases a clamp on the
steering wheel and permits electrical current to flow
through engine components. Turning the key further sends
electricity to an electromagnet, pulling a starter motor into
position, rotating the starter motor, spitting high voltage
through rotors, wires and spark plugs in a very precise
order, sucking gasoline and air into engine cavities,
consequently igniting the gasoline and air mixture, pushing
pistons which, through mechanical linkages, rotate the
engine’s crankshaft. The rotationalso activates a generator
which, combined with those explosions, causes a self-
sustaining repetition. Electrical and monitoring circuits
are activated. You release the key and prepare to put the
car in gear.

By now you get the idea. Getting into a car and driving away
is a simple task for a modern American. Yet the number of
machine-level activities that take place in that short span is
enormous. When you enter “PRINT 3 + 4”7 and BASIC
responds “7”, that simple action represents an equally
astounding number of machine-level activities: checking
the entire keyboard for your typing, displaying your typing
in the correct screen position, interpreting your commands
and checking them for correctness, calculating the results,
displaying the results, and returning for your next input.
That's a summary of the thousands of steps involved.
Machine language is working for you at all times.

Where is the machine language? How do you get to it? And
how does it work? Some folks tell me that the “dot on the
screen” example is shopworn. Well, get ready. Here it is
again. For me, an intellectual understanding of a concept is
seldom as effective as seeing or hearing something
concrete. Throughout this course, visual and sonic
examples will be used frequently — so you know you've
“done something”’. So, putting a dot on the screen is the
place to start.

To put that dot on the screen, you have to know where the
screen is. The “where” is what’s known as the computer’s
memory map. This map is a description of how the
computer’s designers have arranged its memory. I'll talk a
great deal about memory maps later in this course, but for
the moment let me tell you that the normal Color Computer
screen occupies a block of memory 512 characters long
beginning at memory location 1024 and running through
memory location 1535. That’s where it lies in the overall
map of 65,536 memory locations.

So when you ask BASIC to PRINT on the screen,
evaluations are made to determine the exact screen
location that is available, and the information is
subsequently placed in screen memory for you to see and
read. We can emulate this process. Turn your computer on,
and when “OK” appears, type POKE 1024,110. (Repeat)
Press ENTER. Your screen should show a black dot in the
upper left hand corner — an ordinary period, actually. You
could just as easily PRINT this from BASIC. But now try
this. Type POKE 1024,46 (repeat), and press ENTER.

e5.5%

Now there’s a black box with a white dot — a reverse-video
period. There’s nothing you can PRINT from BASIC to
produce that, because it’s one of BASIC’s non-printable
codes.

Simple as that seems, this example represents just one of
the hundreds of capabilities that machine language offers.
In fact, there are 32 characters BASIC doesn’t let you see.
Have a look in this next example.

Program #1, a BASIC program. Turn on the power of your Ex-
tended Color BASIC computer. When the cursor appears, type
CLCAD and press ENTER. The computer will search (S) and
find (F). When the cursor reappears, LIST this program. If the
program is not similar to the listing, or if an 1/0 error occurs, re-
wind to the start of the program and try again. For severe load-
ing problems, see the Appendix.

1@ CLS
2@ PRINT"EASIC'S CHARACTER SET:"
32 FOR X = @ TO 1&7

4@ PRINT CHR$(X):

5@ NEXT

6@ PRINT:PRINT"THE WHOLE THING:"
7@ FOR X = @ TO 187

8@ POKE 1216+X, X
9@ NEXT

10@ PRINTE448,"";

Run this program. You will see the 96 numbers, letters and
symbols that BASIC can print. Below them you will see all
128 numbers, letters and symbols that your computer
actually has available.

To summarize this program: BASIC prints its available
characters, whereas the POKE statement manipulates
memory to contain exactly what you wish.

The first advantage of machine language, then, wiil be to
give you access to everything your computer has built into
it, with no exceptions. Before I turn to another advantage,
you should note now that the two sets of characters in the
previous example are not displayed in the same order. I'll
explain why later.

Displaying Characters

% Can you PRINT a reverse-video
period on the scveen using
BASIC?

o, you can't PRINT a

reverse-video period,

What BASIC comwend do you use
tc display a reverse-videc
pariod?

POKE.

What does POME do?

FOKE places a valuve directly in
BENOrY.

¥ How many characters can BASIC
ot display using PRINT?

3 characters camnot be
displayed with PRINT.

% How many characters are
available in the Color

Computer?
128 characters are available.

What comsand can display all
126 characters?

PKE.

t How does it display all 128
characters?

By directly wanipulating display
—nory.

*#khat is the arramgmeent of
wenory lovations called?

The mesory sap.

t dhere dees the normal Color
Computer dispiay screen start in
this mewory map?

At location 1024,

#What is the comand for
displaying vaiee #i1] at the
first location in display
weory?

POKE 1624, 111

Learning the éSéa(::,5> 5

Printing and POKEing

What is the purpose of program
#2?

To fill the screen with a
display 512 identical
characters.

¥hat are the four wsays this
program fills the screen with
characters?

By PRINTing characters; by
PRINTing stringsy by POKEing
values; by using machine
language.

6 Lesson 1

Program #2, a BASIC program. Turn on the power of your Ex-
tended Color BASIC computer. When the cursor appears, type
CLOAD and press ENTER. The computer will search (§) and
find (F). When the cursor reappears, LIST this program. If the
program is not similar to the listing, or if an 1/0 error occurs, re-
wind to the start of the program and try again. For severe load-
ing problems, see the Appendix.

1@ CLS
2@ INPUT"CHARACTER" ; A%

32 PRINT“PRINTING..."

42 GOSUBR 440

5@ CLS : GOSUR 448 : TIMER = @
6@ FOR X = 1 TO S11

7@ PRINT A%:

8@ NEXT

9@ A = TIMER : GOSUR 44@

100 GOSUR 460

110 GOSUER 44@ : CLS

12@¢ PRINT"PRINTING STRINGS..."
130 GOSUR 44@ : CLS : TIMER = @
140 FOR X = 1 TD 15

15@ PRINT STRINGS (38, A$) 3

16@ NEXT

172 PRINT STRING$(31,A%);

18@ A = TIMER : GOSUB 440

19@ GOSUB 46@

220 GOSUR 440

c2l@d CLG

228 PRINT"POKING CHARACTERS..."
230 A = ASC(A%)

242 GOSUE 44@ : CLS : TIMER = @
25@¢ FOR X = @ TD 511

Z6B POKE 1084+X,A

27@ NEXT

280 A = TIMER : GDSUE 44@

290 GOSUB46D

300 GOSUR 44@

31@ CLS

320 PRINT*MARCHINE LANGUAGE..."
330 DATA ED, B3, ED, BE, @4, ¢, E7, 8@, 8C, 06, @0, 26, F9, 39
340 FOR X = 1600@ TO 16@13

35@ READ B$: A = VAL ("EH"+E$)
36@ POKE X,A

370 DEFUSR@=16000

38@ NEXT : TIMER = @

3%@ A = USR@(ASC(A%))

400 A = TIMER : GOSUE 44@

41@ GOSUB46D

420 BOSUE 440

433 END

440 FOR N = 1 TO S@@ : NEXT
45@ RETURN

46@ CLS :PRINT"TIMER READS"A
478 GOSUB44@

48@ RETURN

Welcome back. The program demonstrates the speed of
6809 assembly language. Its purpose is simply to fill the
screen with 512 identical characters, which can be done in
at least four ways: by printing 512 characters through
BASIC, by printing strings of characters, by POKEing 512
characters from BASIC directly into screen memory, and
by handing control over to a 6809 machine language
program. RUN this program now.

1% KE 65478 %
1 POKE. (5479, &
38 &5 10O

\\lil//l/[f{

-

\

First, enter any uppercase letier from A to Z you wish
displayed. Observe the BASIC printing technique. Notice
the string printing method, which is quite fast. Now watch
the BASIC POKEing technique. And finally, the machine
language routine seems instantaneous.

Now there are three important things to notice. The first is
the speed of the machine language program; don’t miss that
final display. Run the program again. This time, enter a
number or punctuation mark as the character to be printed
instead of a letter. Observe carefully as the printing and
string printing finish that the LAST (512th) letter is
missing. In BASIC, if you print in that 512th screen
position, the screen automaticaily scrolls to the next line.
But characrers can be POKEd anywhere in memory, even
inthe last screen space. The machine language programisa
fast way of doing that POKEing.

Yet there’s something else. This time, the characters
printed are not the same as those POKEd into memory or
displayed by the machine language program. Recall the
first program in this lesson — the characters weren't in the
same order when printed and POKEd into memory. The
reasonisthe hardware chosen to perform the video display.
This hardware is limited to displaying only 64 characters —
numbers, symbols, and uppercase letters. The Color
Computer uses reverse (also called inverted) letters to
represent lowercase. The BASIC software knows how to
switch all these around to get the standard order — the
order of ASCII, the American Standard Code for
Information Interchange. This first, short machine
language program doesn’t do that. But it can be expanded.
We'll return to that later.

The final lines of the BASIC program contain data
statements and other commands which set up and execute
a machine language program. Although you may examine
these now, I'll hold back the detailed explanation of these
for the moment.

So far, 've only played around with screen memory hy
putting some things on it. Now enter a three-line program;
T'll read it to you. Line 10. POKE 65478,0. Line 20. POKE
65479,0. Line 30. GOTO 10. I'li repeat that; you can glance
in the manual and check Program #3 to double-check.

1@ POME&SES478,0
Z@ POKESS479, @
o GOTO1@

RUN this program. What’s that? It's delving into the heart
of the computer, manipulating its control signals. It’s video
screen position information masquerading as computer
memory. And that’s the subject of the next lesson.

Screen Memory

What domc ASCI] mean?

fmerican Standard Code for
Informstion Interchange.

% How does the Color Computer
represant lowercase letters?

Lowercase is represented by
revevse video {white on black).

* Qe the internzl (herdware)
Color Computer characters in
ASCIL order?

Ho.

+ Does PRINT display the
characters in HECII order?

Yes.

#Does POHE display the

characters in ABCIT order?
Yo,

t Why doss PRINT display the
characters in ASCII order?

Because the BRBIC software
switches thea.

What BRSIC command is used to
show the internal order of the
characters?

POKE.

What does POKE do?

It places a value into wemory.

% Uhat locations in the mewory
map does the normal Color
Computer display screen use?
From locations 1824 to 1535,

% Of the four sethods in Program
2 — PRINTiag characters,
PRINTing strings, POMEing, amd
wachine language — which is
fastest?

Hachine languape is the fastest
ﬁhwl

Learning the 6&)9 7

Lesson 1

